Universidad de Lima Facultad de Ingeniería Industrial Carrera de Ingeniería Industrial

ESTUDIO DE PREFACTIBILIDAD PARA LA INSTALACIÓN DE UNA PLANTA PARA EL DISEÑO Y FABRICACIÓN DE BOMBAS DE VACÍO

Trabajo de investigación para optar el título profesional de ingeniero industrial

Wiley Lescano Villegas Código 19782344

Aseso.Juan Carlos Goñi Delion

Lima – Perú Mayo del 2016

ESTUDIO DE PREFACTIBILIDAD PARA LA INSTALACIÓN DE UNA PLANTA PARA EL DISEÑO Y FABRICACIÓN DE BOMBAS DE VACÍO

SCIENTIA

TABLA DE CONTENIDO

RESUMEN EJECUTIVO	1
CAPÍTULO I: ASPECTOS GENERALES	3
1.1. Problemática de la investigación	3
1.2.Objetivos de la investigación	
1.3. Justificación del tema	
1.4. Hipótesis del trabajo	8
1.5. Marco referencial de la investigación	8
1.6. Análisis del sector	9
CAPÍTULO II: ESTUDIO DE MERCADO	12
2.1. Aspectos generales del estudio de mercado	12
2.1.1. Definición comercial del producto	12
2.1.2. Principales características del producto	
2.1.3. Determinación del área geográfica que abar	cará el estudio15
2.1.4. Determinación de la metodología que se en	npleara en la investigación de
mercado	16
2.2. Análisis de la demanda	16
2.2.1. Demanda histórica	
2.2.2. Demanda potencial	19
2.2.3. Proyección de la demanda y metodología de	
2.3. Análisis de la oferta	33
2.3.1. Análisis de la competencia	33
2.3.2. Oferta actual	33
2.4. Demanda para el proyecto	34
2.4.1. Segmentación del mercado	34
2.4.2. Selección del mercado meta	34
2.4.3. Determinación de la demanda para el proye	ecto36
2.5. Comercialización	37
2.5.1. Políticas de comercialización y distribución	137
2.5.2. Publicidad y promoción	39
2.5.3. Análisis de precios	40

	2.6. Análisis de los insumos principales	41
	2.6.1. Características de la materia prima	41
	2.6.2. Disponibilidad de insumos	42
	2.6.3. Costo de la materia prima	43
CAI	PITULO III: LOCALIZACIÓN DE PLANTA	44
	3.1. Identificación y análisis detallado de los factores de localización	44
	3.2. Identificación y descripción de las alternativas de localización	45
	3.3. Evaluación y selección de localización	50
	3.3.1. Evaluación y selección de la macro localización	50
	3.3.2. Evaluación y selección de la micro localización	51
CAI	PÍTULO IV: TAMAÑO DE PLANTA	53
	4.1. Relación tamaño-mercado	53
	4.2. Relación tamaño-recursos productivos	53
	4.3. Relación tamaño-tecnología	53
	4.4. Relación tamaño-punto de equilibrio	54
	4.5. Selección del tamaño de planta	55
CAl	PÍTULO V: INGENIERÍA DEL PROYECTO	56
	5.1. Definición del producto basada en sus características de fabricación	56
	5.1.1 Especificaciones técnicas del producto	
	5.2. Tecnologías existentes y procesos de producción	
	5.2.1. Naturaleza de la tecnología requerida	
	5.2.2. Proceso de producción	62
	5.3. Características de las instalaciones y equipos	73
	5.3.1. Selección de la maquinaria y equipo	
	5.3.2. Especificaciones de la maquinaria	73
	5.4. Capacidad instalada	77
	5.4.1. Cálculo de la capacidad instalada	77
	5.4.2. Cálculo detallado del número de máquinas requeridas	80
	5.5. Resguardo de la calidad	81
	5.5.1. Calidad de la materia prima y de los insumos	81
	5.5.2. Medidas de resguardo de la calidad en la producción	85
	5.6.Estudio de Impacto Ambiental	86
	5.7. Seguridad y Salud Ocupacional	88
	5.8. Sistema de mantenimiento.	02

	5.9. Programa de producción	.94
	5.9.1 Consideraciones sobre la vida útil del proyecto	.94
	5.9.2 Programa de producción para la vida útil del proyecto	.94
	5.10. Requerimiento de insumos, servicios y personal	.95
	5.10.1. Materia prima, insumos y otros materiales	95
	5.10.2. Servicios: energía eléctrica, agua, lubricante, etc	.96
	5.10.3. Determinación del número de operarios y trabajadores indirectos	.98
	5.10.4. Servicio de terceros	
	5.11. Características físicas del proyecto	.100
	5.11.1. Factor edificio	.100
	5.11.2. Factor servicio	
	5.12. Disposición de planta	.103
	5.12.1. Determinación de las zonas físicas requeridas	.103
	5.12.2. Cálculo de áreas para cada zona	.104
	5.12.3. Dispositivos de seguridad industrial y señalización	
	5.12.4. Disposición general	
	5.12.5. Disposición de detalle	.113
	5.13. Cronograma de implementación del proyecto	.114
CAP	PITULO VI: ORGANIZACIÓN Y ADMINISTRACIÓN	
	6.1. Organización empresarial	.115
	6.2. Requerimientos de personal directivo, administrativo y de servicios	.116
	6.3. Estructura organizacional	.116
CAP	PITULO VII: ASPECTOS ECONÓMICOS Y FINANCIEROS	.118
	7.1. Inversiones	
	7.1.1. Estimación de las inversiones	.118
	7.1.2. Capital de trabajo	.121
	7.2. Costos de producción	.123
	7.2.1. Costos de materias primas, insumos y otros materiales	.123
	7.2.2. Costos de los servicios	.125
	7.2.3. Costo de la mano de obra	127
	7.3. Presupuesto de ingresos y egresos	.128
	7.3.1. Presupuesto de ingreso por ventas	.128
	7.3.2. Presupuesto operativo de costos	129

7.3.3. Presupuesto operativo de gastos administrativos	130
7.4.Flujo de fondos netos	131
7.4.1. Flujo de fondos económicos	132
7.4.2. Flujo de fondo financiero	132
CAPITULO VIII: EVALUACIÓN ECONÓMICA Y FINANCIERA DEL	
PROYECTO	135
8.1. Evaluación económica: VAN, TIR, B/C, PR	135
8.2. Evaluación financiera: VANF, TIRF, B/C, PR	135
8.3. Análisis de los resultados económicos y financieros del proyecto	136
8.4. Análisis de sensibilidad del proyecto	136
CAPITULO IX: EVALUACIÓN SOCIAL DEL PROYECTO	138
9.1. Identificación de las zonas y comunidades de influencia del proyecto.	138
9.2. Impacto en la zona de influencia del proyecto	138
9.3. Impacto social del proyecto	138
CONCLUSIONES	141
RECOMENDACIONES	142
REFERENCIAS	143
BIBLIOGRAFÍA	
ANEXOS	146

SCIENTIA ET

ÍNDICE DE TABLAS

Tabla 1.1 Participación Regional en la cartera estimada de proyectos mineros	4
Tabla 1.2.Cartera estimada de proyectos mineros	4
Tabla1.3.Cartera estimada de proyectos mineros según etapa actual	5
Tabla 2.1.Importaciones y exportaciones de bombas de vacío	17
Tabla 2.2.Producción nacional de bombas de vacío	18
Tabla 2.3.Demanda interna aparente de las bombas de vacío	19
Tabla 2.4.Demanda de bombas de vacío por su capacidad en el sector minero	
(unidades)	20
Tabla 2.5.Vida promedio de bomba de vacío del sector minero	21
Tabla 2.6.Demanda de bombas de vacío por su capacidad en el sector	
agroindustrial y alimentos (unidades)	22
Tabla 2.7.Vida promedio de bombas de vacío del sector agroindustrial	
y alimentos	22
Tabla 2.8.Demanda de bombas de vacío por su capacidad en el	
sector papelero (unidades)	23
Tabla 2.9.Vida promedio de bombas de vacío del sector papelero	24
Tabla 2.10.Demanda de bombas de vacío por su capacidad en	
el sector pesquero (unidades)	25
Tabla 2.11.Vida promedio de bombas de vacío del sector pesquero	25
Tabla 2.12.Demanda de bombas de vacío por su capacidad en el sector	
construcción y del plástico (unidades)	26
Tabla 2.13.Vida promedio de bomba de vacío en el sector de construcción	
y del plástico	27
Tabla 2.14.Preferencias a la marca	27
Tabla 2.15.Consumo de bombas de vacío entre el año 2005 y 2014	29

Tabla 2.16.Demanda proyectada del parque de bombas de vacío	30
Γabla 2.17.Cartera estimada por años de los proyectos mineros en TM	31
Гabla 2.18.Demanda proyectada (unidades)	32
Γabla 2.19.Resultados de encuestas	35
Гabla 2.20.Grado de intensidad de compra	36
Гabla 2.21.Demanda del proyecto	36
Γabla 2.22.Precios para bombas 2000 CFM	40
Γabla 2.23.Empresas proveedoras para las bombas de vacío	43
Tabla 2.24.Costo de materia prima (Dólares)	43
Гabla 3.1.PEA Ocupada y Desocupada y No PEA	46
Tabla 3.2.Precio por consumo en S/. kWh	47
Γabla 3.3.Tarifa comercial / industrial	48
Γabla 3.4.Distancias hacia distritos de clientes y proveedores (Kilómetros)	48
Γabla 3.5.Costo por m ² de terreno	49
Γabla 3.6.Ubicación de las oficinas principales de las mineras	50
Γabla 3.7.Tabla de factores de localización	51
Γabla 3.8.Matriz de enfrentamiento de factores de localización	51
Tabla 3.9.Escala de calificación	52
Гabla 3.10.Matriz de evaluación de localidades	52
Tabla 4.1.Costo fijo, costo variable y precio de venta	54
Гabla 4.2.Tamaño de planta	55
Γabla 5.1.Especificaciones técnicas de calidad de las bombas de vacío	58
Γabla 5.2.Fundamentos de métodos de fabricación	61
Гabla 5.3.Materia prima	72
1	12
Гabla 5.4.Equipos a utilizar	73

Γabla 5.6.Actividad para fabricar una bomba de vacío	77
Γabla 5.7.Tiempo total por bomba de vacío	78
Γabla 5.8.Asignación de tareas a estaciones	79
Γabla 5.9.Cálculo del número de máquinas y/u operaciones	81
Γabla 5.10.Composición química de la fundición	82
Γabla 5.11.Propiedades físicas de la fundición	82
Γabla 5.12.Composición química del acero AISI 1045	83
Γabla 5.13.Propiedades físicas del Acero	83
Γabla 5.14.Propiedades físicas del rodamiento	83
Γabla 5.15. Análisis de desviaciones en los parámetros del código API 681	85
Γabla 5.16.Matriz de identificación y evaluación de impactos ambientales	87
Γabla 5.17.Identificación preliminar de peligros y evaluación de riesgos	90
Γabla 5.18.Tipos de mantenimiento a la maquinaria y/o equipos	93
Γabla 5.19.Programa de producción	94
Γabla 5.20.Requerimiento de materia prima e insumos (unidades)	95
Γabla 5.21.Potencia en kW de las maquinas	96
Γabla 5.22.Consumo de energía eléctrica producción del año 2015 al 2019	97
Γabla 5.23.Consumo de energía eléctrica anual (kWh/año)	97
Γabla 5.24.Consumo anual de agua en la planta	98
Γabla 5.25.Requerimiento de mano de obra directa	99
Γabla 5.26.Requerimiento de mano de obra indirecta	99
Γabla 5.27.Requerimiento de personal administrativo	99
Γabla 5.28.Servicios higiénicos para el personal	101
Γabla 5.29.Iluminación por área de trabajo	102
Γabla 5.30.Áreas de las oficinas administrativas	102

Tabla 5.31.Cálculo de área de almacenamiento de componentes

de hierro fundido	105
Γabla 5.32.Cálculo de materiales	106
Γabla 5.33.Cálculo de área total de almacenamiento de materia prima e insumos	106
Γabla 5.34.Método de Guerchet	108
Γabla 5.35.Áreas complementarias de la planta	109
Γabla 5.36.Lista de motivos	111
Γabla 5.37.Cronograma de implementación	114
Γabla 7.1.Inversión en maquinaria y equipos	119
Γabla 7.2.Costos de equipos de oficina	119
Γabla 7.3.Inversión fija tangible	120
Γabla 7.4.Inversión fija intangible	121
Γabla 7.5.Capital de trabajo	122
Γabla 7.6.Inversión total del proyecto	123
Гabla 7.7.Costo de materia prima e insumo	124
Γabla 7.8.Pliego tarifario para la venta de energía eléctrica	125
Γabla 7.9.Costos de energía eléctrica	126
Γabla 7.10.Estructura tarifaria para la venta de agua	126
Γabla 7.11.Cálculo de los sueldos anuales de la MOD	127
Γabla 7.12.Cálculo de los sueldos de la MOI	128
Γabla 7.13.Cálculo de los sueldos administrativos	128
Γabla 7.14.Presupuesto de ingresos por ventas	129
Γabla 7.15.Presupuesto de depreciación	129
Γabla 7.16. Presupuesto operativo de costos (S/.)	130
Γabla 7.17.Presupuesto de gastos operativos	130
Γabla 7.18.Estado de resultados sin considerar financiamiento	131

Tabla 7.19. Flujo de fondos económicos (S/.)	132
Tabla 7.20.Fuente de financiamiento	132
Tabla 7.21.Repartición de la inversión	133
Tabla 7.22.Condiciones del préstamo	133
Tabla 7.23.Cronograma de pagos (S/.)	134
Tabla 7.24.Flujo de fondos financieros (S/.)	134
Tabla 8.1.Indicadores económicos	135
Tabla 8.2. Indicadores financieros	135
Tabla 8.3. Variación en el precio de las bombas de vacío	136
Tabla 8.4. Variación en el precio de la materia prima	137
Tabla 8.5. Variación en la cantidad vendida	137
Tabla 9.1.Valor agregado del proyecto	139
Tabla 9.2.Relación Producto Capital	139
Tabla 9.3.Densidad de Capital	140
Tabla 9.4.Intensidad de Capital	140

SCIENTIA ET PRAKIS

ÍNDICE DE FIGURAS

Figura 1.1.Transferencia de Canon Minero	5
Figura 1.2.Transferencia de Canon Minero en las regiones en el 2014	6
Figura 1.3.Análisis de Porter de las Cinco Fuerzas	10
Figura 2.1.Importaciones de bombas de vacío de Perú en porcentaje mundial	
a nivel Sudamérica	28
Figura 2.2.Grado de intensión de compra del producto	35
Figura 5.1.Esquema básico del funcionamiento de la bomba de vacío	57
Figura 5.2.Fabricación semiautomática	59
Figura 5.3.Fabricación automatizada	60
Figura 5.4.Diagrama de operaciones	69
Figura 5.5.Diagrama de Gozinto	71
Figura 5.6.Unión de estaciones	79
Figura 5.7.Distribución de extintores y señalización	110
Figura 5.8.Tabla relacional de actividades	112
Figura 5.9.Diagrama relacional de actividades	112
Figura 5.10.Plano de disposición de planta	113
Figura 6.1.Organigrama	117

ÍNDICE DE ANEXOS

Anexo 1:Cartera estimada de principales proyectos mineros	147
Anexo 2:Ensamble	148
Anexo 3:Especificaciones técnicas de fundición	149
Anexo 4:Foto de bomba de vacío	150
Anexo 5:Cotización	151
Anexo 6:Encuesta de servicio al cliente	152

SCIENTIA ET PRAXIS

RESUMEN EJECUTIVO

El presente estudio tiene como finalidad evaluar la viabilidad técnica, económica, financiera y de mercado para la implementación de una planta para la fabricación de bombas de vacío.

Se realizó un estudio de mercado donde se determinó la demanda interna aparente con la cual se pudo realizar una proyección desde el 2015 hasta el 2019 disponiendo que la demanda sea de 56 bombas de vacío al año. Mediante el análisis de comercialización se pudo establecer que la disponibilidad de insumos era el adecuado para el proyecto además de considerar la tendencia de precios.

En lo referente a la localización de planta se realizó una evaluación y selección mediante el método de ranking de factores que determino que la planta se ubicara en el distrito de Lurín, Lima.

La selección de tamaño de planta estará dirigido a la mediana empresa, con los factores analizados se determinó que el tamaño de planta será definido por la relación tamaño-mercado es decir 56 bombas de vacío al año.

En la ingeniería del proyecto se realizó un análisis de calidad de materia prima, seguridad y salud ocupacional, impacto ambiental y mantenimiento. Se determinó el número de trabajadores que entre operarios y administrativos hicieron un total de 15 trabajadores y se calculó el área total de la planta en 420 m².

En la estructura organizacional se muestra el organigrama, la relación entre sus diferentes partes y sus respectivas funciones.

Los recursos para financiar el proyecto está compuesto por el 40% de capital propio y 60 % por financiamiento. La evaluación económica y financiera demuestra que el proyecto es rentable para ello se utilizaron indicadores como el VAN, TIR, B/C, PR.

Se realizó la evaluación social del proyecto donde se determinó que generara beneficios y oportunidades de desarrollo para los pobladores de la zona.

EXECUTIVE SUMMARY

This study aims to assess the technical, economic, financial and market feasibility for the implementation of a plant for the manufacture of vacuum pumps

A market study where the apparent domestic demand which could make a projection from 2015 to 2019 providing that the demand is 56 vacuum pumps per year was determined was performed. By analyzing marketing it was established that the availability of inputs was right for the project in addition to considering the price trend.

With regard to plant location evaluation and selection it was made by the method of ranking factors that determine the plant was located in the district of Lurin, Lima.

In selecting plant size will target medium-sized enterprises from the factors discussed it determined that the plant size will be defined by the ratio-market size that is 56 vacuum pumps per year.

In the project engineering analysis of the quality of raw materials, occupational health and safety, environmental impact and maintenance it was performed. The number of workers between workers and management had a total of 15 workers and the total floor area of 420 m² was calculated was determined.

In the organizational structure the organizational chart shows the relationship between the different parts and their functions.

The resources to fund the project is composed of 40% of equity and 60% finance. The economic and financial assessment shows that the project is profitable for that indicators such as VAN, TIR, B/C, PR were used.

Social assessment of the project where it was determined that generate benefits and development opportunities for the residents of the area was conducted.

CAPÍTULO I: ASPECTOS GENERALES

1.1. Problemática de la investigación

En la actualidad, la industria minera en el Perú es una de las actividades prioritarias para el desarrollo del país debido a la gran riqueza minera y a la generación de fuentes de trabajo para el crecimiento de los pueblos cercanos a los centros mineros. Cada vez son más las empresas mineras que desean invertir en el desarrollo de nuevas tecnologías, motivados por factores como la expansión de la economía. La demanda de estas empresas está colmada de maquinaria importada que se ha visto beneficiada por el bajo precio del dólar y la poca oferta existente actualmente de maquinaria industrial fabricada en el país.

El mantenimiento de las bombas de vacío importadas de Estados Unidos y China marca Vonner, Nash, entre otros, es un problema por resolver ya que el tiempo de retorno del exterior de una bomba de vacío reparada es de tres a cuatro meses.

Se puede observar que el crecimiento en la demanda de bombas de vacío se ve incrementado por el avance de la actividad minera metálica reflejado en una mayor producción de las empresas mineras, asociadas a mejoras técnicas y operativas, a la ejecución de diversos proyectos de ampliación y modernización de operaciones y a la puesta en marcha de nuevas unidades productivas según el informe del INEI 2015 como se muestra en los siguientes cuadros y figuras:

SCIENTIA ET PRAXIS

Tabla 1.1
Participación Regional en la cartera estimada de proyectos mineros

Región	US\$ Millones	%
Apurímac	19.170	30,37
Arequipa	9.472	15,01
Cajamarca	9.132	14,47
Junín	5.670	8,98
Moquegua	5.320	8,43
Cuzco	2.746	4,35
Piura	2.645	4,19
Ica	2.483	3,93
Lambayeque	1.599	2,53
Áncash	1.220	1,93
Tacna	1.200	1,90
Puno	1.006	1,59
Huancavelica	630	1,00
Ayacucho	427	0,68
Huánuco	350	0,55
Pasco	45	0,07
Total	63.115	100%

Fuente: MEM (2015)

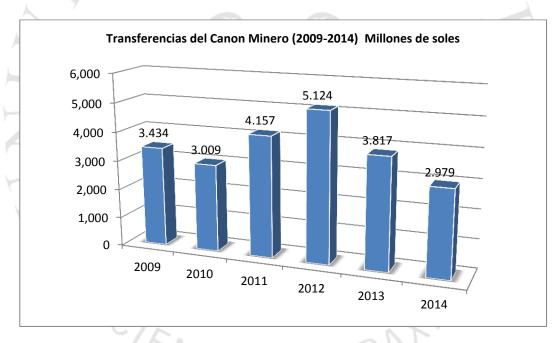
Tabla 1.2

Cartera estimada de proyectos mineros

PAÍS	US\$ Millones	%	
China	22.651	35,90	
Canadá	10.154	16,09	
EE.UU.	10.079	15,96	
Perú	4.332	6,86	
México	4.160	6,59	
Australia	3.790	6,00	
Brasil	2.415	3,83	
Japón	2.140	3,39	
Reino Unido	1.650	2,61	
Otros	1.744	2,76	
Total	63.115	100%	

Fuente: MEM (2015)

Tabla 1.3.

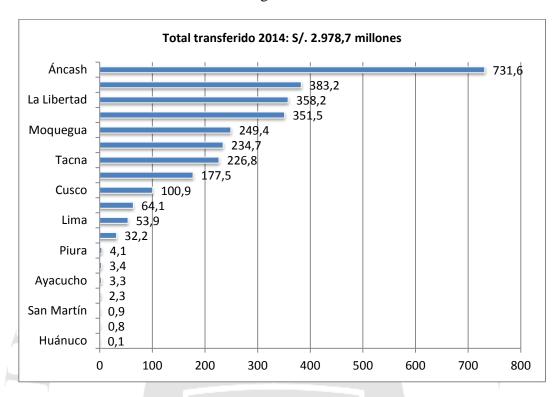

Cartera estimada de proyectos mineros según etapa actual

Etapa Actual	US\$ Millones	%
Ampliación	9.185	14,55
Con EIA aprobado	29.398	46,58
Con EIA presentado	71	0,11
En exploración	24.461	38,76
Total	63.115	100%

Fuente: MEM (2015)

Figura 1.1.

Transferencia de Canon Minero



Fuente: MEF (2015)

Según la Figura 1.1.en los últimos 6 años se han transferido a los Gobiernos Locales, Regionales, Universidades e Institutos Nacionales más de S/. 22.520 millones.

Figura 1.2.

Transferencia de Canon Minero en las regiones en el 2014

Fuente: MEF (2014)

Son estos argumentos por la cual la presente investigación está referida a la fabricación de bombas de vacío tipo húmedo y rotativo de cuyo diseño será en base a estándares mundiales de tecnología y fabricación.

1.2. Objetivos de la investigación

El objetivo principal del trabajo de investigación es determinar la viabilidad técnica, económica, social y medio ambiental para la instalación y funcionamiento de una planta de fabricación de bombas de vacío en la ciudad de Lima.

Los objetivos específicos son:

- Realizar un estudio de mercado que permita conocer la demanda del producto a ofrecer como la oferta existente del mismo.
- Evaluar infraestructura y equipos adecuados tomando en cuenta tecnología, proceso de fabricación y el impacto en el medio ambiente.

- Determinar el proceso productivo, proveedores de insumos, equipos, materia prima, servicios, tecnología, recursos humanos, localización y distribución de planta.
- Estimar económicamente el proyecto, identificando los requerimientos de inversión necesarios, así como un análisis y proyección de los estados financieros para lograr establecer la factibilidad económica de la empresa y, de ese modo, disponer de los recursos económicos para su ejecución.
- Desarrollar un estudio administrativo para conocer las características de tipo organizacional convenientes para el funcionamiento de la planta.

1.3. Justificación del tema

Justificación técnica

El proyecto se justifica, porque actualmente todos los procesos para la fabricación de bombas de vacío están comprobados y puestos en marcha en diferentes partes del mundo, incluyendo Perú.

En el mercado peruano podemos encontrar las siguientes marcas: Nash, Vonner, Sihi, Kenflo, Comesa, Fundición y Maestranza Industrial.

Otro punto a favor es que la planta se puede implementar con los equipos necesarios para los procesos de fabricación como: tornos, fresadoras, cepillos, etc. ya que estas máquinas tienen certificaciones internacionales que garantizan la fabricación de diferentes componentes de la bomba de vacío.

Sobre la materia prima existe un stock a bajo costo que permite garantizar el proceso de fabricación.

• Justificación económica

El proyecto se considera económicamente aceptable ya que ahorra agua, energía eléctrica y térmica, así como la consideración ambiental generando beneficios económicos tanto al empresario como a los trabajadores.

La tendencia de inversión en el sector de la minería, es de un crecimiento ascendente durante los próximos años, lo que resultaría óptimo para el proyecto ya que influiría en la demanda de las bombas de vacío positivamente.

Existe en el Perú un mercado creciente que aún no está siendo cubierto por las empresas actuales, lo que genera que se solicite importar el producto a EEUU y Europa.

• Justificación Social

No solo los beneficios económicos son importantes en la puesta en marcha del proyecto, también se busca beneficios de carácter social. Con la ejecución del proyecto, y el funcionamiento de la planta se generan diversos puestos de trabajo mediante la contratación de obreros, técnicos, supervisores, ingenieros, administradores, personal de oficina, etc. contribuyendo a reducir la tasa de desempleo en el Perú.

Se utilizará técnicas de fabricación limpias para el medio ambiente al elaborar el producto. Así mismo la seguridad y la salud de los trabajadores será prioridad en la ejecución del proyecto. Por todos estos puntos descritos anteriormente podemos concluir que el proyecto es socialmente viable.

1.4. Hipótesis del trabajo

Considerando el crecimiento de la minería en el Perú y un mercado que acepta el producto, el proyecto de instalar una planta de fabricación de bomba de vacío para su comercialización en el mercado es viable tanto técnica como financieramente.

1.5. Marco referencial de la investigación

Como fuentes de información se utilizará:

- Taggart, A.(1920). Handbook of Mineral Dressing Ores and Industrial Minerals (10^aed.). España: Interciencia.
 - Este manual nos muestra las características técnicas de diferentes equipos en los que podríamos utilizar el producto.
- Marks, Theodore Baumeister, Avalone Eugene A. (1985).
 Manual del Ingeniero Mecánico (8^a ed.). México: Mc Graw-Hill
 Teorías sobre gases, aire, fuerza centrífuga que se aplican en el producto.
- Díaz Garay, B., Jarufe, B., Noriega, M.T. (2007). Disposición de Planta (2ª ed.). Lima: Universidad de Lima.

Una buena distribución de planta es importante para un proyecto, y este libro es una ayuda importante para encontrar una mayor efectividad industrial.

 Freeman, H. (1998). Manual de prevención de la Contaminación Industrial (1ª ed.). México: Mc Graw-Hill.

Preservar el medio ambiente es uno de los puntos importantes del proyecto y este libro nos da las pautas para cumplir con este objetivo.

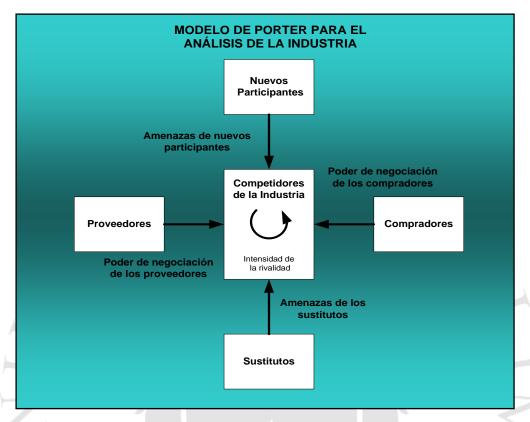
Domínguez, J.A., García, S., Ruíz, A., Domínguez, M.A., Alvarez, M.J.
 (1995). Dirección de Operaciones (1ª ed.). España: Mc Graw-Hill.

Teorías de planificación, programación y control de proyectos que se presentan en este libro serán de utilidad para la elaboración del presente estudio.

Se utilizarán tesis como fuentes de investigación para realizar el presente proyecto como se muestra a continuación:

Lescano Villegas, B. (2000). Fabricación de filtro de discos de 6'Ø X 4.
 (Tesis para optar el título de Ingeniero Mecánico Electricista). Lima: Universidad Nacional de Ingeniería.

De esta tesis se puede recopilar estudios técnicos para determinar la importancia del equipo, motivo del trabajo dentro de una planta concentradora.


1.6. Análisis del sector

Se utilizará el "Análisis de Porter de las Cinco Fuerzas" según figura 1.3.

SCIENTIA

Figura 1.3.

Análisis de Porter de las Cinco Fuerzas

Fuente: Porter (1987)

a) Amenazas de nuevos ingresos

Dentro de la barrera de ingresos de nuevos competidores al mercado de bombas de vacío en el Perú, están las licencias y trámites para poder producirla en el mercado. Esto es considerado una amenaza débil ya que cumpliendo con los procedimientos legales y tributarios requeridos se pueden obtener los permisos y licencias.

Las empresas fabricantes de bombas de vacío ofrecen productos de una tecnología considerada de alto rendimiento para las industrias con diferenciación. Por lo tanto la diferenciación del producto es considerada una amenaza fuerte y una debilidad para el producto.

b) Amenaza de productos sustitutos

Un producto sustituto se considera a cualquier otro producto que pueda brindar características o beneficios equivalentes al que se va a ofrecer. Actualmente no existe un producto que pueda remplazar a la bomba de vacío en lo que a manejar grandes volúmenes de aire se refiere, desde 1.059 CFM promedio hasta 9.598,34 CFM (pies cúbicos por minuto), razón por la cual se considera una amenaza mínima.

c) Rivalidad entre competidores existentes

En el mercado de bombas de vacío, se cuenta con fabricantes extranjeros como Nash, Vooner, Kenflo y empresas peruanas como Fundición y Maestranza Industrial (FMI) y Comesa, que son los competidores más representativos en el Perú. En este mercado el producto tecnológicamente se le considera de alto rendimiento por lo que se observa una competencia intensa entre empresas.

d) Poder de negociación de los proveedores

La venta de ejes, empaquetaduras, rodamientos, planchas, así como accesorios de medición de presión son producidas en grandes cantidades a nivel mundial con las especificaciones técnicas requeridas para fabricar las bombas de vacío. Hacen que el mercado de estos productos sea mucho mayor en comparación a la producción nacional y su proyección en los próximos 20 años. Además, las grandes fundiciones que ofrecen los cascos y conos como: Fundición Callao, Fundición Central, Fumasa, Fundición Chilca, están en constante competencia de quien ofrece los mejores tiempos de entrega y el mejor precio. Por lo tanto, los proveedores de esta materia prima e insumos manejan un poder bajo de negociación.

e) Poder de negociación de los clientes.

Los clientes tienen un poder alto de negociación debido a que, al ser un producto a pedido y de calidad similar en las empresas del sector, son capaces de negociar precios y condiciones al momento de la compra de una bomba de vacío. Existiendo, además, la posibilidad de adquirir un producto importado de mayor tecnología y de similar precio.

CAPÍTULO II: ESTUDIO DE MERCADO

2.1. Aspectos generales del estudio de mercado

2.1.1. Definición comercial del producto

La bomba de vacío es un equipo con un rotor en equilibrio dinámico. Gira libremente sin contacto metálico alguno en una caja circular que contiene un líquido que generalmente es agua. Este rotor es una pieza circular fundida que comprende una serie de paletas orientadas en el sentido de rotación que salen de un cubo cilíndrico hueco a través del cual se ha prensado el eje. Estas paletas están alabeadas a los lados, formando una serie de cámaras o compartimientos.

A partir de un punto "A" los compartimientos del rodete están llenos de agua. El agua sigue el movimiento rotatorio pero, debido a la fuerza centrífuga, se comprime a la periferia de la cámara.

El agua, que en "A" llena el compartimiento del rodete completamente, sale hacia afuera a medida que adelante el rodete, hasta que en el compartimiento del rodete está vacío. Debido a la forma de la cámara, cuya pared se acerca más al rodete, el agua es obligada a volver al compartimiento, de modo que en éste queda lleno de nuevo. Este ciclo se repite en cada revolución. Cuando el agua es forzada fuera del compartimiento en un punto "B", entra en su lugar aire por la lumbrera de admisión en la pieza cónica que comunica con la entrada de la bomba. El rodete da entonces una vuelta de 360°, el agua vuelve al compartimiento del rodete y el aire que había llenado este compartimiento sale por una de las aberturas que lleva la pieza cónica hacia la salida de la bomba.

La bomba de vacío conectada al sistema del filtro de discos ayuda, por intermedio del vacío, que el concentrado de mineral tenga un secado que alcanza un porcentaje de humedad de 8% aproximadamente.

Desde el punto de vista del producto, analizado por sus tres niveles:

Producto básico: El producto ofertado es una bomba de vacío cuya carcaza es de hierro fundido ASTM A-48-41 CLASE 50, un rodete de hierro fundido nodular ASTM

A-396, un eje de acero AISI 1045 y los otros componentes principales del mismo material de la carcasa (ver anexo 4).

Producto real: El vacío producido por la bomba de vacío no produce fluctuaciones, de modo que no precisa amortiguadores y el producto es de una uniformidad garantizada, larga vida útil, menos desgaste, sin lubricación interna, poco consumo de energía y no necesita de cimentaciones costosas.

Producto aumentado: El servicio de reparación y el suministro de partes para bombas estarán asegurados con el stock que la empresa mantendrá periódicamente en el almacén. Se otorgará una garantía de 2 años. En caso de un mal funcionamiento debido a un defecto en la fabricación de una de las piezas, los costos por materiales y mano de obra serán asumidos por la empresa. Se estará a disposición del cliente en caso hubiera alguna emergencia para darle la solución en el más breve plazo.

Se entregará un manual de instalación y nuestro personal se encontrará presente en el momento del montaje y arranque inicial de la bomba en las instalaciones del cliente como una forma de garantizar nuestro producto.

2.1.2. Principales características del producto

a) Posición arancelaria NANDINA, CIIU

La partida arancelaria del producto es 8414.10.00.00 bombas de vacío. La clasificación internacional industrial uniforme Rev. 4 (CIIU) sección C industria manufacturera clase 2813 fabricación de bombas de vacío.

b) Usos y características del producto

Las bombas de vacío son del tipo húmedo y rotativo. Estas bombas manipulan por arrastre el filtrado y el aire; manejan grandes volúmenes de aire hasta 9.000 CFM con mucho líquido a un vacío moderado dependiendo de la altura sobre el nivel del mar en que se encuentra (de 25" a 16") de Hg.

Las bombas de vacío están dirigidos principalmente al:

- > Sector minero: Secado del mineral.
- Sector de Alimentos: Tratamiento del azúcar.
- La industria papelera: En la eliminación de humedad del papel.

Sector pesquero: Para la succión del pescado de las embarcaciones hacia la planta procesadora.

Características de la bomba de vacío:

- La bomba tiene una sola parte móvil sin rozamientos metálicos que produzcan desgastes.
- El vacío producido por las bombas no presentan fluctuaciones, de modo que no necesitan amortiguadores.
- Su funcionamiento está libre de vibraciones.
- Su menor tamaño comparado con la capacidad, reduce el espacio ocupado por la bomba.
- La bomba puede manejar mayores cantidades de líquidos con el aire, sin aumento de consumo y energía.
- La capacidad permanece constante a vacíos más altos.
- Emplea transmisiones y motores económicos.

Los líquidos arrastrados con el aire no pueden dañar la bomba de vacío.

c) Bienes sustitutos y complementarios

Las bombas de vacío tipo rotativas, tienen diferentes sustitutos como son las bombas de tipo reciprocante, la bomba de lóbulos y bombas de diafragma.

Las bombas de vacío se caracterizan por su velocidad de bombeo y la cantidad de aire evacuado por unidad de tiempo. Toda bomba tiene una presión mínima de entrada que es la presión más baja y una presión límite superior a la salida.

La diferencia de las bombas de vacío rotativas con este otro tipo de bombas se encuentran es sus precios, en los ruidos producidos en el funcionamiento, en la potencia consumida y los costos de mantenimiento que las hacen menos competitivas en situaciones de alta demanda. Otra diferencia que se encuentra es que las bombas rotativas son más versátiles; su caudal de vacío m³/hora, es mucho mayor para los mismos tamaños.

Sobre los componentes complementarios que acompañan a la bomba de vacío en su instalación y que complementan su funcionamiento son los silenciadores, las bombas de agua, tanques receptores, conexiones de tubería, válvulas etc.

2.1.3. Determinación del área geográfica que abarcará el estudio

El área geográfica en donde estará orientado el estudio se encuentra en las localidades de la costa y sierra central del Perú, donde se encuentran centros mineros y otros sectores de la industria nacional. Existe en el mercado aproximadamente 48 empresas mineras cuyas inversiones se basan en una cartera estimada de proyectos mineros que incluyen ampliaciones, con E.I.A. aprobado, E.I.A. presentado, y proyectos en exploración.

Las principales empresas que formarían parte de la cartera de inversión son: Shougang Hierro Perú S.A.A., Compañía Minera Milpo, Minera Las Bambas, Minera Yanacocha, etc.

- Ampliaciones: Toquepala, Bayovar, Marcona, Cerro Verde, Toromocho, El Porvenir.
- Con E.I.A. aprobado: Pukaka, Pampas de Pongo, Las Bambas, Minas Conga,
 Quellaveco, Explotación de relaves, Tía María.
- Con E.I.A. presentado: Magistral
- En exploración: Marcobre, Michiquillay, Explotación de relaves Bofedal 2, Cotabambas, Trapiche, Cañarisco, Hilarion, Quechua, Don Javier, Los calatos, Galeno, Huaquira, Cerro Ccopane, Río Blanco, Hierro Apurimac, Accha, Quicay II, Anubia.

El periodo de estudio de este proyecto se realizará a partir del 2010 hacia adelante debido que en el periodo 2009 hubo una crisis de magnitud global. El

proyecto del producto esta principalmente dirigido a la industria minera en el Perú.

2.1.4. Determinación de la metodología que se empleara en la investigación de mercado

La metodología para el desarrollo de la investigación de mercado estará de acuerdo a:

- Evaluación de las características específicas del mercado.
- Cálculo del precio
- Evaluación de la oferta y la demanda

Se explicará a partir de los datos históricos de las importaciones de bombas de vacío y la demanda de bombas en el Perú de los últimos 5 años. Se desarrollará con las funciones estadísticas de MS Excel, con las que se resolverá con objetividad el crecimiento específico de las importaciones y de la demanda de la bomba de vacío.

2.2. Análisis de la demanda

2.2.1. Demanda histórica

Durante siglos la búsqueda experimental del vacío y su problema de funcionamiento han preocupado al hombre a través de las épocas. El vacío se entronca con el maquinismo nacido de la revolución industrial. La industria actual en el Perú requiere de una combinación de bombas de vacío para conformar un equipo para determinado proceso donde es necesario la mejor opción y el mejor precio. En los últimos cinco años desde el 2010 hasta el 2014 la demanda ha sido fluctuante debido a los conflictos sociales y a la caída de los precios de los metales.

Importaciones / Exportaciones

Las bombas de vacío tienen como partida arancelaria el 8414.10.00.00 con la cual podemos identificar el país, al importador y el tipo de bomba de vacío importadas en los últimos años.

Las bombas de vacío se importan actualmente de Estados Unidos, Brasil, Taiwán, Chile, Alemania, Corea, Canadá entre otros.

Además se puede advertir que no hay exportaciones como se demuestra en los últimos cinco años desde el 2010 hasta el 2014. En la tabla 2.1.se observa las cantidades importadas y exportadas de las bombas de vacío.

Tabla 2.1.

Importaciones y exportaciones de bombas de vacío

Año	Importaciones (unidades)	Exportaciones (unidades)		
2010	19	0		
2011	40	0		
2012	01	0		
2013	29	0		
2014	15	0		

Fuente: SUNAT (2015)

Elaboración propia

Producción

Como este producto es por encargo, la producción nacional de bombas de vacío depende de la demanda interna más las exportaciones menos las importaciones. Una característica de los fabricantes es que están preparados para un incremento de la demanda de las bombas de vacío por que cuentan con los medios necesarios a su alcance para afrontar una mayor producción de este producto. La elección de importar el producto por parte de los clientes es por preferencia a una marca específica o por asegurar la calidad del producto.

Las empresas peruanas que fabrican las bombas de vacío son Comesa y Fundición y Maestranza Industrial S.R.L. ambas cubren más del 90 % del mercado peruano.

La producción de años anteriores se ha deducido de acuerdo a la demanda e importaciones, debido a la falta de datos estadísticos. En la tabla 2.2.se aprecia las cantidades producidas.

Tabla 2.2.Producción nacional de bombas de vacío

	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Demanda	109	100	107	139	129	89	110	84	134	135
Importaciones	19	2	7	37	24	19	40	1	29	15
Producción	90	98	100	102	105	70	70	83	105	120
Nacional	90	90	100	102	103	70	70	63	103	120

Fuente: SUNAT y FMI (2015)

Elaboración Propia

Demanda interna Aparente (DIA)

Para el cálculo de la demanda interna tomamos los datos anteriormente mencionados, no tomamos en cuenta las exportaciones ni la diferencia de inventarios utilizando la fórmula:

$$DIA = P + I - X \pm Dif. S$$

P = Producción

I = Importaciones

X= Exportaciones

Según los cuadros de exportaciones que nos proporciona la Sunat se puede observar que las exportaciones de bombas de vacío son nulas. No se exportan bombas de vacío por lo que no se está considerando las exportaciones en el cálculo de la producción nacional.

En la tabla 2.3.se muestra la demanda interna aparente de las bombas de vacío del 2005 al 2014.

Tabla 2.3.

Demanda interna aparente de las bombas de vacío

	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Demanda										
Interna Aparente	109	100	107	139	129	89	110	84	134	135

Elaboración propia

2.2.2. Demanda potencial

El uso de las bombas de vacío se utilizara en diferentes sectores de la industria de acuerdo a sus necesidades de producción.

1) Patrones de consumo

Patrón de consumo en el sector minero

En este sector se encuentran las empresas mineras y es el sector que mayor consume las bombas de vacío en comparación a los otros sectores. Usan bombas nacionales de Fundición y Maestranza Industrial y Comesa e Importadas de Estados Unidos, China, Alemania.

La cartera estimada de proyectos mineros por un monto de \$ 63.115 millones de dólares en inversión para extraer minerales y procesarlos en concentrados nos garantiza un uso permanente de bombas de vacío.

Estas bombas se usan en los filtros de discos mineros con el objeto de separar la pulpa del mineral que está en forma de fango a través de la superficie de un cuerpo poroso, a menudo un tejido que constituye un medio filtrante, depositándose los sólidos que van aumentando el espesor de la torta mientras el líquido pasa a través de ella succionada por la bomba de vacío. Luego el concentrado es transportado a una tolva de almacenamiento para luego ser pesado y transportado en camiones para su venta o proceso de fundición.

Las diferentes mineras usan bombas de vacío rotativas de variados tamaños desde 700 CFM hasta 9000 CFM siendo las más usadas las de 2000 CFM.

Las empresas mineras usan diferentes cantidades de bombas de vacío como es el caso de Shougang Hierro Perú S.A.A. que usa 24 bombas de vacío. La demanda en pie cubico por minuto (CFM) y el promedio de vida útil de las bombas de vacío se ve en la tabla 2.4 y 2.5 respectivamente.

Tabla 2.4. Demanda de bombas de vacío por su capacidad en el sector minero (unidades)

Cliente	9	1	Capacidad (CFM)				
	700	1000	2000	3000	4000	6000	9000
Shougang Hierro Perú			16			6	2
Cia. Minera Milpo			18				
Cia. Minera Casapalca			3				
Cia. Minera Volcan			6				
Cia Minera Lincuna			4				
Sociedad Minera el Brocal					4		
Minera Nyrstar			2				
Minera Brexia			2				
Minera Shuntur			2				
Minera Chinalco Perú			2				* 1
Sociedad Minera Austria Duvaz	o.		3		. 1	5	
Total	0	0	58	0	4	6	3
Encuestas (2015)		/V 7	IA ET	P	Kı.		

Elaboración propia

Tabla 2.5.Promedio de vida útil de bomba de vacío del sector minero

Cliente			Años		
	2	4	5	8	10
Shougang Hierro Perú					X
Milpo				X	
Casapalca					X
Cia. Minera Volcan					X
Cia Minera Lincuna					X
Sociedad Minera el Brocal					X
Minera Nyrstar					X
Minera Brexia					X
Minera Shuntur					X
Minera Chinalco Perú					X
Sociedad Minera Austria Duvaz					X

Encuestas (2015)

Elaboración propia

> Patrón de consumo en el sector agroindustrial y alimentos

Este sector que demanda bombas de vacío, se caracteriza porque instala mayormente bombas de vacío importadas especialmente de Estados Unidos y Alemania como son las bombas Nash y Worthington.

Se utiliza en los trapiches de las azucareras, una vez extraído el jugo de la caña de azúcar y sometido a un proceso de clarificación que es sacar los sólidos suspendidos del jugo y clarificado con cal, esto nos dará el jugo puro, una mezcla de agua y azúcar el cual pasara al proceso de evaporación, que es extraer agua de ese jugo para aumentar la concentración de azúcar la evaporación se hace en un sistema de cinco efectos evaporando con vacío producido por las bombas de vacío y cada efecto permite evaporar el agua a menor temperatura y obtener el melado y por cocimiento obtener los cristales de azúcar. Una vez seco y frio se envía a tolvas para su embolsado.

Las azucareras utilizan bombas de vacío de 700 CFM y 2000 CFM en un promedio de 4 bombas de vacío por azucarera al igual que en la industria de alimentos.

Entre estas cooperativas Azucareras se encuentran Agropucala S.A.A., Empresa Agro industrial Pomalca S.A.A. Nestle Perú, Confiperú.

Tabla 2.6.

Demanda de bombas de vacío por su capacidad en el sector agroindustrial y alimentos (unidades)

Cliente)		Capacidad (CFM)	×		<u> </u>	
	700	1000	2000	3000	4000	6000	9000
Agropucala S.A.A.		4					
Pomalca S.A.A.		14					
C.A.P. Casagrande		6	8				
Nestle Perú		4					
Confiperú	3						
Total	3	28	8	0	0	0	0
Encuestas (2015)							
Elaboración propia							

Promedio de vida útil de las bombas de vacío es de 8 años según tabla 2.7

Tabla 2.7.Promedio de vida útil de bombas de vacío del sector agroindustrial y alimentos

Cliente	Años	. 5	
2 4	5	8	10
Agropucala S.A.A.	DF	X	
Pomalca S.A.A.	EJ L,	X	
C.A.P. Casagrande		X	
Nestle Perú		X	
Confiperú		X	

Encuestas (2015)

Elaboración propia

Patrón de consumo de la industria papelera

En el proceso de fabricación de papel la bomba de vacío se utiliza para succionar la humedad del papel.

La pasta debidamente preparada se reparte uniformemente en un transportador llamado Fourdrinier hecho sobre una tela filtrante sobre el cual actúa un dispositivo de desgote que crea una fuerza de aspiración generado por la bomba de vacío en el cual se elimina agua y la pulpa líquida se convierte en papel.

Las bombas de vacío usadas mayormente son importadas de Estados Unidos cuyo tamaños varían en 2000 CFM, 4000 CFM y 6000 CFM en un promedio de 6 bombas de vacío por papelera.

Entre este sector papelero están Papelera Atlas, Papelera Nacional, Protisa, Papelera Reyes. La demanda de medidas de bomba de vacío en este sector es variable según muestra la tabla 2.8.

Tabla 2.8.

Demanda de bombas de vacío por su capacidad en el sector papelero (unidades)

Cliente			Capacidad (CFM)				
	700	1000	2000	3000	4000	6000	9000
Papelera Atlas		3	3			,	
Papelera Nacional		3	4		1		
Protisa						9	
Papelera Reyes			2			_	
Industria del Papel	0,.	3	2	1	1	70	
Carvimsa	IE	1/7	6		SVL		
Papelera Zarate	1	v / /	A IET	F			
Papelera Campoy	2						
Trupal		3	5				
Papelera del Sur	1		1				
Total	4	12	24	1	1	9	0

Encuestas (2015)

Según la tabla 2.9.las bombas de vacío mantienen un promedio de vida útil de 10 años.

Tabla 2.9.Promedio de vida útil de bombas de vacío del sector papelero

Cliente			Años		
	2	4	5	8	10
Papelera Atlas					X
Papelera Nacional					X
Protisa			$\Delta \Delta$		X
Papelera Reyes					X
Industria del Papel					X
Carvimsa					X
Papelera Zarate					X
Papelera Campoy					X
Trupal					X
Papelera del Sur					X

Encuestas (2015)

Elaboración propia

> Patrón de consumo del sector pesquero

En el sector pesquero las plantas de harina y aceite de pescado usan bombas de vacío para transportar el pescado.

Las plantas de harina y aceite de pescado por medio de un sistema de bombas absorbentes por presión de vacío que se encuentran en los muelles, descargan el pescado que traen los barcos pesqueros para absorberlos, se inunda con agua de mar las bodegas a una relación de un volumen de agua de mar con un volumen de pescado a transportar para llegar a los petates drenadores donde se separa el agua del pescado.

Se usa en este sector pesquero bombas de vacío importadas de USA y nacionales de tamaño 2000 CFM ó 3000 CFM en un promedio de 2 bombas de vacío por puerto.

Entre estas pesqueras están Pesquera Exalmar S.A.A., Corporación Pesquera Inca (Copeinca), Pesquera Diamante.

En el sector pesquero la demanda de bombas de vacío son de menor tamaño como indica la tabla 2.10

Tabla 2.10.

Demanda de bombas de vacío por su capacidad en el sector pesquero (unidades)

Cliente	1	D	Capacidad (CFM)			
	700	1000	2000	3000	6000	9000
Pesquera Exalmar	-8					
COPEINCA		13				>
Pesquera Diamante	14					
Total	22	13	0	0	0	0

Encuestas (2015)

Elaboración propia

El promedio de vida útil es de 10 años como muestra la tabla 2.11.extendiendo su funcionamiento unos 4 años más.

Tabla 2.11.

Promedio de vida útil de bombas de vacío del sector pesquero

Cliente	Años	
2 4	5	10
Pesquera Exalmar	E I ,	X
COPEINCA		X
Pesquera Diamante		X

Encuestas (2015)

> Patrón del consumo de la construcción y del plástico

En el sector de la construcción se ve que Eternit usa las bombas de vacío para el secado de la pasta de la fibra cemento al pasar por las mesas de vacío donde le quitan la humedad.

En el sector de la fabricación de cemento, como Unión Andina de Cementos (UNACEM) usan sistemas neumáticos.

En la industria del plástico todo va por transporte neumático. Por lo que el uso de bombas de vacío en el sector plástico y en el sector cemento no usan las bombas de vacío si no un sistema neumático como se indica en la tabla 2.12.

Tabla 2.12. Demanda de bombas de vacío por su capacidad en el sector construcción y del plástico (unidades)

Cliente			Capacidad (CFM)			
	700	1000	2000	3000	6000	9000
Eternit		4	V			
UNACEM		0				
Duraplast		0				
Total	0	4	0	0	0	0
Encuestas (2015)	12			2	13	
Elaboración propia	EN	TIA	FT F	PRA		

El promedio de vida útil es de 8 años como se ve en la tabla 2.13

Tabla 2.13.Promedio de vida útil de bomba de vacío del sector de construcción y del plástico

Clianta			Años		
Cliente	2	4	5	8	10
Eternit				X	
UNACEM				0	
Duraplast				0	

Encuestas (2015)

Elaboración propia

En resumen, según los últimos 10 años el parque de bombas de vacío lo conforman aproximadamente 1.136 bombas de vacío según tabla 2.15

Lealtad de compra

La lealtad a la marca está referido a las preferencias que un cliente tiene al momento de realizar una compra. La lealtad de compra de bombas de vacío es de 33,3% según tabla 2.4con lo que, se concluye que al momento de presentarse una necesidad de cambio, una reparación o un mantenimiento de la bomba de vacío el cliente puede estar dispuesto a buscar la alternativa. Las variables principales para que el cliente decida cambiar o mantener la misma marca, es la calidad, el precio y el servicio pos venta que se le pueda ofrecer por lo que si la calidad y el servicio en la mayoría de proveedores prevalece es con el precio de venta que se encontrara la diferencia.

Tabla 2.14.
Preferencias a la marca

Alternativas para utilizar otras marcas	Preferencia a la marca	Renovar proveedor	Total de entrevistados		
Calidad	3	4			
Precio	6	13			
Servicio Técnico	1	3			
Total (%)	33,3%	66,7%	100%		

Fuente: UN COMTRADE (2014)

2) Determinación de la demanda histórica

El Perú actualmente es considerado un mercado emergente, con una cartera estimada de proyectos mineros pendientes de ejecución que requerirá una mayor cantidad de utilización de este producto, lo que nos hace orientar la demanda de bombas de vacío hacía el sector minero pero sin descuidar el sector pesquero, el sector agroindustrial y el sector papelero que son un mercado permanente para la adquisición de bombas de vacío. Para determinar la demanda histórica del producto se decidió tomar como base la suma del parque nacional de bombas de vacío.

Importaciones

Las importaciones de bombas de vacío de Perú a nivel mundial están en el puesto 62 que representa el 0,08% de las importaciones mundiales y a nivel sudamericano nos encontramos en el puesto séptimo. La importación generada en el año 2014 fue de 15 bombas de vacío por lo que deducimos que la producción nacional debido a un crecimiento económico incremento su producción y tuvo una mayor oferta en el mercado con respecto a las importaciones. La figura 2.1.muestra la ubicación del Perú con respecto a los demás países de sud américa.

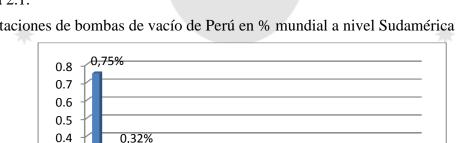


Figura 2.1. Importaciones de bombas de vacío de Perú en % mundial a nivel Sudamérica

0,18% 0,18%

Fuente: UN COMTRADE (2014)

0.3

0.2 0.1

Desarrollo de la industria en el Perú

El desarrollo de las bombas de vacío en el Perú viene desde inicios de 1900 pero es en la industria actual que el Perú requiere de una combinación de bombas de vacío para conformar un equipo para determinado proceso donde es necesario la mejor opción y el mejor precio. En los últimos diez años desde el 2005 hasta el 2014 la demanda ha sido fluctuante en un sector más que en el otro debido a los conflictos sociales y a la caída de los precios de los metales.

T PRAXIS

Tabla 2.15.

Consumo de bombas de vacío entre el año 2005 y 2014

Año	N° Bomba
2005	109
2006	100
2007	107
2008	139
2009	129
2010	89
2011	110
2012	84
2013	134
2014	135
Total	1.136

Fuente: Sunat y FMI (2015)

2.2.3. Proyección de la demanda y metodología del análisis

La proyección de la demanda para los próximos 5 años se calcula de acuerdo a la demanda histórica según tabla 2.15. En este caso en particular para la reposición se tomara el 10% del total del parque de bombas de vacío para cada año, tomando en cuenta que la vida útil de cada bomba es aproximadamente 10 años además se tomara en cuenta la demanda originada por los proyectos en ampliación, con EIA aprobado y de exploración de las principales mineras que laboran en nuestro país como se muestra en la tabla 2.17, tabla 2.18. y en el anexo 1. La suma de estas dos demandas será la demanda proyectada.

En la tabla 2.16.se muestra la proyección de reposición del parque de bombas de vacío para los años comprendidos entre el 2015 al 2019.

Tabla 2.16.Demanda proyectada del parque de bombas de vacío

Año	DIA Proyectada
2015	114
2016	114
2017	114
2018	114
2019	114
	2015 2016 2017 2018

Elaboración propia

El coeficiente de correlación es 10% de 1.136

Para calcular la demanda originada por los proyectos de ampliación minera se tomará en cuenta la cartera estimada de los proyectos mineros según la tabla 2.17.

Tabla 2.17.

Cartera estimada por años de los proyectos mineros en toneladas métricas

Año	Toneladas métricas finas	Toneladas métricas húmedas
2015	1.119.456	4.032.548,94
2016	1.148.818	4.138.318,83
2017	1.149.000	4.138.974,44
2018	1.228.000	4.423.551,45
2019	1.482.600	5.340.681,90

Fuente: Ministerio de Energía y Minas(2014)

Elaboración propia

Para determinar el número de bombas de vacío que se necesitan para los proyectos mineros se ha desarrollado un cálculo numérico tomando como base la producción por año de cada una de estas minas. Estos cálculos se dan tomando la producción estimada del proyecto minero en toneladas métricas húmedas de un año entre 360 días así calculamos la producción requerida por día y dividimos entre las toneladas por día que procesa el filtro.

Formula:

$$N = \frac{P}{T \times C}$$

N = Numero de bombas de vacío

P = Producción estimada en el proyecto

T= 360 días

C = Capacidad de trabajo en toneladas por día de 24 horas de un filtro de discos Ejemplo de cálculo:

Filtro de discos 6'Ø x 4 discos

N = Número de bombas de vacío

P = 4032548.94 tonelada métricas húmedas

C = 47 toneladas métricas por día

T = 360 días

La tabla 2.18 muestra la demanda interna proyectada desde el año 2015 al 2019.

Tabla 2.18.

Demanda proyectada (unidades)

Año	Demanda interna aparente proyectada del parque de Bombas de vacío (Unidades)	Demanda proyectada según los proyectos mineros (Unidades)	Demanda interna aparente proyectada (Unidades)
2015	114	239	353
2016	114	245	359
2017	114	245	359
2018	114	262	376
2019	114	316	430

2.3. Análisis de la oferta

2.3.1. Análisis de la competencia

El principal competidor es Comesa que es considerada como la primera alternativa para la fabricación y reparación de las bombas de vacío.

Sus oficinas se encuentran ubicadas en la ciudad de Lima cuenta con una oficina de proyectos y una planta de producción todo ubicado en una extensión de 36.000 m². Se encuentra implementada con tecnología que le permite fabricar bombas de vacío desde 200 CFM hasta 9000 CFM equipado con banco de pruebas.

Comesa cuenta con una red de comercialización que le permite que sus entregas lleguen en los tiempos establecidos. Sus ingenieros y técnicos respaldan la calidad del producto tanto para su funcionamiento óptimo como brindando soluciones a sus necesidades de sistemas de vacío.

Posee un banco de pruebas que le permite observar el funcionamiento del equipo antes de ser entregado al cliente, y cuenta con instrumental adecuado para la calibración del vacío.

En lo referente a Fundición y Maestranza Industrial es una empresa competitiva que cuenta también con una maestranza importante para la fabricación de bombas de vacío y muy reconocida en la industria nacional por la calidad de sus productos y por el soporte técnico brindado a sus clientes.

Las empresas mineras siguen importando bombas de vacío pero no en cantidades que puedan afectar la producción nacional sino por lo contrario están adquiriendo en mayor volumen la fabricación nacional. INTIA ET PRAXIC

2.3.2. Oferta Actual

En la actualidad el mercado de bombas de vacío en lo referente al mercado nacional lo comercializan Comesa y Fundición y Maestranza industrial, entre ambas compañías el año 2014 fabricaron 120 bombas de vacío.

En el caso de las importaciones, mayormente son solicitadas de Estados Unidos, China y Brasil siendo Hydrodrill service el mayor importador. En cuanto a las empresas mineras también están importando bombas de vacío como son las mineras Shougang Hierro Perú, Perú Bar, Compañía Minera Buenaventura, Austral Group, Miski Mayo, preferentemente de Usa y Chile. Empresas de otros sectores Papelera Atlas, Agroindustria Paramonga, Casa Grande que importan de Brasil y Alemania.

2.4. Demanda para el proyecto

2.4.1. Segmentación del mercado

En el presente proyecto se tendrá en cuenta una segmentación para el mercado empresarial, el cual se diferencia con el mercado de consumo, por la organización del mercado, por la condición de compra, por la demanda y por la toma de decisiones.

De acuerdo a esta valoración, esta clase de mercado se caracteriza por la envergadura de la empresa, por la cantidad de personas que participan en la compra y por el conocimiento profesional que se necesita para tomar una decisión.

Un criterio importante de segmentación de mercado a utilizar es la geográfica. Las empresas mineras que utilizan bombas de vacío para el secado de minerales se encuentran ubicadas en 18 regiones del país. Por lo que el mercado va a estar dirigido a las mineras que se encuentren en la costa y la región andina del Perú.

Este mercado tiene connotaciones especiales que pueden influir en la demanda y que se tiene que considerar como son los conflictos sociales, efectos de productividad, reformas administrativas, clima, problemas ambientales, etc.

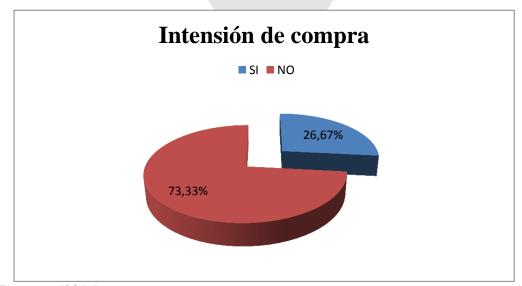
2.4.2. Selección del mercado meta

Se seleccionó el mercado meta considerando la ubicación geográfica de los probables clientes según lo establecido en el punto 2.1.3 y 2.1.4. El mercado meta considera a los tres tamaños de minería, la grande, mediana y pequeña empresa. La bombas de vacío a producir serán de la serie 700 CFM, 1000 CFM 2000 CFM, 4000 CFM, 6000 CFM. Nuestros clientes serán todas las mineras que tengan planta de beneficio para tratamientos de minerales.

Para elegir el mercado meta se ha considerado la intención y el factor de intensidad de compra del producto, aplicando la corrección de intención de compra tendremos un alcance sobre la decisión a futuro que tomara el cliente con respecto a la

compra del producto. La tabla 2.19.nos muestra los resultados obtenidos de procesar los componentes de comportamiento de las encuestas (ver anexo 6).

Tabla 2.19. Resultados de encuestas


Indicador	Resultado
Intención de compra afirmativa	26,67%
Intensidad promedio de compra	50%
Demanda susceptible de ser captada	13%
Demanda del proyecto	13%

Elaboración propia

En la figura 2.2.se muestra el grado de intensión en la que los posibles clientes estarían dispuestos a adquirir un producto con mayor calidad y mejor precio de venta. En la tabla 2.20.se señala la intensidad de su probable compra, siendo la escala del 1al 6 probablemente y del 7 al 10 que están dispuestas a comprar el producto.

Figura 2.2.

Grado de intensión de compra del producto

Encuesta (2015)

Tabla 2.20.

Grado de intensidad de compra

Escala	Porcentaje
1	0,0 %
2	37,5%
3	12,5%
4	0,0%
5	0,0%
6	0,0%
7	25%
8	25%
9	0,0%
10	0,0%
Total	100%

Encuesta (2015)

Elaboración propia

2.4.3. Determinación de la demanda para el proyecto

El porcentaje que se espera lograr es de 13% de la DIA proyectada de acuerdo a los resultados de las encuestas según la tabla 2.19

La demanda del proyecto para los próximos 5 años se muestra en la tabla 2.21.

Tabla 2.21.

Demanda del proyecto

Año	Demanda del proyecto (unidades)
2015	46
2016	47
2017	47
2018	49
2019	56
E1.1 17	

2.5. Comercialización

2.5.1. Políticas de comercialización y distribución

La política de comercialización está enfocada en un procedimiento de acciones empresariales determinadas a organizar, fijar precios, promover y distribuir los productos y servicios para satisfacción de los clientes.

Las bombas de vacío se distribuirán con la marca BC INDUSTRIAS SAC, la finalidad de este nombre es que puede leerse y vocalizarse con facilidad y como la marca es la causa final de la compra de un producto para mucho de los consumidores, ya que supone la concentración de cualidades (calidad, servicio, garantía, etc.) el conocimiento por parte del cliente de esta marca simplificaría la toma de decisión.

Principios y valores

Para comercializar la bomba de vacío se tomara en cuenta los siguientes principios y valores:

- Calidad moral y responsabilidad en todas nuestras relaciones comerciales.
- Innovación.
- Establecer una relación con el entorno social y económico.
- Riguroso cumplimiento con la normativa vigente.
- Ofrecer productos y servicios de calidad
- Crear relaciones estables con los clientes a través del tiempo.
- Respeto y honestidad hacia nuestros clientes.
- Garantizar una sana competencia beneficios y descuentos favorables al cliente cumpliendo con las normas vigentes de la libre competencia.
- Identificación en nuestros trabajadores de la filosofía y valores de la empresa.

Productos ofrecidos y zona de venta

Como el producto es fabricado a pedido, para diferentes tipo de clientes, las bombas de vacío serán distribuidas desde la planta en Lima hacía las diferentes partes del país según lo acordado con el cliente.

Políticas en los procesos de venta

La política en los procesos de venta es ofrecer en el mercado peruano productos y servicios que se ajusten a las reglas de libre comercio reconocidas y sin otras limitaciones que las decretadas en las leyes del Perú, las relaciones con los clientes serán en condiciones comerciales objetivas que beneficien económicamente y contribuyan en el desarrollo nacional de las actividades comerciales, respetando las leyes y reglamentos de la libre competencia en el Perú.

Política de precios

- El cliente tendrá a su disposición la política de precios adaptadas a los productos ofrecidos para su comercialización.
- Los precios incluirán todo tipo de impuesto consignado en las normativas legales vigentes
- En la política de precios se mantendrán los productos disponibles a excepción que los productos por alguna contingencia tenga que retirarse del mercado, así mismo el producto se modificará o actualizará de acuerdo a la coyuntura del momento.

Política de distribución

La distribución del producto se realizara por medio del canal de marketing directo, con fuerza de ventas profesional propia, con la finalidad de tener una comunicación personal con el cliente y mantener una relación continua.

Traslados y despachos

- Se enviará por medio de su transportista los productos adquiridos por el cliente o en su defecto enviado por nuestro transportista según previo acuerdo, a la dirección indicada en su orden de compra.
- Los productos enviados estarán respaldados por una guía de remisión especificando el tipo de producto, la cantidad y el número de orden de

compra así mismo se enviara con el chofer en un sobre cerrado el certificado de calidad de las materias primas y protocolo de fabricación si es requerido.

- Cualquier cambio en la dirección de los almacenes u oficinas del cliente deberá ser informado por escrito con la debida anticipación antes del envío de los productos adquiridos para que figuren en la guía de remisión o en la factura según sea el caso.
- El producto tendrá un embalaje de madera para evitar algún daño que pueda sufrir en el transporte.
- La empresa no se hará responsable por algún daño que sufra el producto adquirido una vez entregado en la dirección indicada por el cliente.

2.5.2. Publicidad y promoción

Publicidad

Estará en función de una publicidad de productos industriales no destinados al consumidor final, sino a otras empresas. Sera necesario utilizar el mayor número de medios de promoción para dar a conocer los productos y servicios e influir en su compra.

Concurrir y participar en simposios, exposiciones, seminarios y expoferias serian una buena alternativa para dar a conocer el producto, actualmente en el Perú este tipo de eventos se organizan periódicamente tanto a nivel interno como a nivel internacional. Se entiende que antes de participar se debe hacer un análisis si esos eventos están orientados a la demanda específica y van a ser beneficiosos a la empresa.

Se contará con una página Web donde los clientes podrán conocer el producto, sus especificaciones técnicas y conocer acerca de la empresa. Esta página Web debe estar en inglés y español.

Suscribirse en publicaciones y revistas técnicas del sector también es una alternativa valiosa de publicidad.

Promoción

Se realizara actividades de corta duración para promocionar las ventas como:

- Descuentos por inauguración.
- Descuentos por más de un producto comprado.
- Catálogos
- Regalos no costosos como una agenda, lapiceros, cortapapeles, etc.
- Seminarios
- Demostraciones
- Visitas a fabrica

2.5.3. Análisis de precios

1) Tendencia histórica de los precios

La tabla 2.22.muestra la tendencia de precios de bombas de vacío para los años 2010 hasta el año 2014

Tabla 2.22.
Precios para bombas 2000 CFM

Año	 Precios US \$	
2010	14.200	
2011	14.200	
2012	14.484	
2013	15.069	
 2014	15.370	

Fuente: Fundición y Maestranza Industrial (2015)

Elaboración propia

2) Precios actuales

Se entrevistó al Ing. Julio Carranza encargado de logística de Fundición y Maestranza Industrial y nos proporcionó el precio actual de la bombas de vacío 2000 CFM que es de US \$ 15.766,00 Dólares Americanos. En el anexo 5 se presenta una cotización de Fundición y Maestranza Industrial SRL para bombas de vacío 2000 que nos servirá de referencia para determinar el precio con el cual se comercializará la bomba de vacío.

2.6. Análisis de los insumos principales

2.6.1. Características de la materia prima

Hierro fundido y Eje de acero

La materia prima principal para la elaboración del producto son el hierro fundido A-48-41 clase 50, el hierro fundido nodular ASTM A-396 y el eje de acero al carbono AISI 1045. Estas materias primas deben cumplir con las especificaciones descritas en el código API y que será detallada en el capítulo V.

Accesorios de medición y control de la bomba de vacío

En las bombas de vacío deben colocarse accesorios con el propósito de mantener el óptimo rendimiento de la bomba.

Características principales de los accesorios de la bomba de vacío:

- 1.-Silenciador: De acuerdo al tamaño de la bomba de vacío se elige también el tamaño del silenciador. Para la bomba de vacío 2000 se necesita un silenciador de 568 mm de diámetro x 2.292 mm de longitud en acero A36. El silenciador de tubo PRV está compuesto de dos cámaras, en él, el sonido se refleja hacia atrás en los cambios de sección transversal, tiene como función aminorar los ruidos producidos por el funcionamiento de la bomba de vacío.
- 2.- Regulador del flujo de agua: Sirve para adaptar los flujos de agua a las cantidades correctas. Existen dos formas de regular el flujo en las bombas de vacío, una forma es usando una válvula reguladora de flujo con este elemento se gradúa el caudal necesario de agua que ingresa a la bomba para su buen funcionamiento, otra forma es usando un sistema de caída de presiones esta regulación controla la presión del agua y por diferencia de presiones regula el caudal. Este sistema remplaza a la válvula reguladora y es más económico.
- **3.-** Vacuómetro: Es el instrumento que mide la presión negativa es decir mide con precisión las presiones inferiores a la presión atmosférica generadas en las bombas de vacío. Este instrumento mide el vacío con escala graduada de 0 a -30 pulg. de Hg. Se usa en cada entrada de la bomba para monitorear el vacío que genera la bomba.

- **4.-**Manómetro: Se usa para medir la presión del agua que ingresa a la cámara de la bomba de vacío. Este instrumento se llama manómetro de tubo de Burdon que presentan en su interior un tubo metálico elástico, aplanado y curvado cuando en su interior actúa una presión este se desplaza y mueve un juego de palancas y engranajes que lo transforman en el movimiento amplificado de una aguja que indica directamente la presión en la escala.
- 5.-Válvula de interrupción de vacío: Se usa la válvula mariposa bridada para aumentar o disminuir el caudal de vacío. El funcionamiento básico de las válvulas de mariposa es sencillo pues sólo requiere una rotación de 90º del disco para abrirla por completo. La operación es como en todas las válvulas rotativas rápida. Son operadas con palanca, no hay cavidades donde pueda acumularse sólidos y son menos pesadas que las válvulas de compuerta, globo o bola.

2.6.2. Disponibilidad de insumos

En la fabricación de la bomba de vacío se necesitan hierro fundido, acero, accesorios de control y seguridad. Estos insumos son fabricados en diferentes países del mundo como son Suiza, Alemania, Estados Unidos, Italia, China. En el Perú contamos con fundiciones y empresas que importan productos para la producción de la bomba de vacío por lo que la disponibilidad de insumos es constante, y no es un limitante para la realización del proyecto.

En la tabla 2.23.se precisan las diferentes empresas importadoras y nacionales que representan a importantes fundiciones y marcas de accesorios para la fabricación de bombas de vacío como Fundición Ventanilla, Rodamientos SKF, Aceros Bohler, etc. Estas empresas garantizan con su stock y certificados de calidad la elaboración del producto.

Tabla 2.23.

Empresas proveedoras para las bombas de vacío

Empresas	
Fundición Ventanilla	
Bohler o Aceros del Perú	
Basco Peruana	
Industrial Control	
Industrial Control	
Camporsal	
Empaquetaduras y elementos	
Cevinsa	
Camporsal	

2.6.3. Costo de la materia prima

En la tabla 2.24.se indica los precios de las materias primas que se utilizan para la fabricación de las bombas de vacío. Estas cotizaciones se han realizado en forma reciente a los principales proveedores de estos productos.

Tabla 2.24.Costo de materia prima (Dólares)

Materia prima-insumo	Costo (US \$)
Hierro fundido (Kg)	1,18
Ejes (Kg)	1,57
Rodamientos	160,08
Manómetros 0-240 PSI	12,35
Planchas de acero	0,10
Válvulas esféricas de 1 ½" NPT	29,02

Fuente: FMI (2015) Elaboración propia

CAPITULO III: LOCALIZACIÓN DE PLANTA

En este capítulo enfocaremos la ubicación de la planta de fabricación de bombas de vacío, considerando los siguientes criterios locacionales:

- > Proximidad a las materias primas
- Cercanía al mercado
- > Requerimientos de infraestructura industrial.
- > Facilidades de transporte
- Mano de obra

3.1. Identificación y análisis detallado de los factores de localización

Para determinar las posibles ubicaciones de la planta de fabricación de bombas de vacío hay que tomar en cuenta factores fundamentales como:

a) Proximidad a las materias primas

Este factor locacional es decisivo, ya que al encontrarse disponibles cercanos y accesibles las fundiciones, ejes y rodamientos como nuestras principales materias primas e insumos, consideramos como posibles ubicaciones a las localidades más cercanas a las empresas que oferten estos productos, en el caso de fundiciones tenemos a Fundición Callao, Fundiciones Especiales, para los ejes Aceros Bohler o Aceros del Perú, para los rodamientos Basco Peruana, SKF.

b) Cercanía al mercado

El mercado con mayores ventajas para el proyecto se encuentra en Lima Metropolitana y Callao, debido a que en estas localidades se encuentran instaladas las oficinas administrativas y almacenes principales de las empresas del sector minero y con ellos se llevaría a cabo la gestión de compras. En este factor el costo de transporte será importante.

c) Requerimientos de infraestructura industrial

En cuanto a infraestructura industrial, los lugares deben contar con áreas destinadas a la actividad industrial, y con suficiente energía eléctrica para las máquinas y agua potable para las pruebas hidrostáticas y servicios sanitarios importantes para este proyecto.

d) Facilidades de transporte

Este factor es importante para llevar el producto final a los almacenes de los clientes, así como el transporte de la materia prima y los insumos. El tiempo de transporte puede influir en el costo.

e) Mano de obra

En el proyecto se requiere de mano de obra calificada, técnica y de mando medio para elaboración del producto y las especificaciones de calidad de acuerdo a lo acordado con el cliente.

3.2. Identificación y descripción de las alternativas de localización

a) Proximidades a las materias primas

Las principales materias primas son el hierro fundido ASTM A-48-41 CLASE 50, el hierro fundido nodular ASTM A-396, el acero al carbono AISI 1045, entre los insumos están los rodamientos SKF 22220 CC/W33 que son adquiridas a las diferentes empresas importadoras y nacionales que se encuentran en Lima (Los Olivos, La Victoria, Cercado) y Callao. Estas empresas incluyen en el precio el costo de transporte.

Los distritos seleccionados se encuentran cercanos a Lima y Callao, siendo Lurín el distrito con mayor cercanía, situación que lo favorecería para minimizar el costo de transporte desde los almacenes de los proveedores a la planta y continuar con el proceso de producción sin contrariedad.

b) Cercanía al mercado

El mercado principal del proyecto se encuentra en Lima Metropolitana, principalmente en la zona central de la ciudad, ya que en estas zonas se encuentran instaladas las principales oficinas del sector minero. Los distritos seleccionados se encuentran cercanos a Lima, siendo Lurín el distrito con más cercanía a Lima y Callao, situación que le favorecería para atender algún requerimiento del cliente y entrega del producto terminado en un menor tiempo a diferencia de los otros dos distritos seleccionados.

c) Disponibilidad de Mano de Obra

También es relevante que los distritos seleccionados tengan una población significativa que provean mano de obra suficiente y adecuada para ser incorporados a la fuerza laboral de la planta ya sea como obreros y empleados sean estos ayudantes, operarios, personal administrativo, ingenieros, etc.

La actividad económica de los distritos de Pachacámac, Lurín y Chilca se demuestra en la tabla 3.1. mediante la Población Económicamente Activa (PEA) Ocupada y Desocupada y No PEA.

Tabla 3.1.

PEA Ocupada y Desocupada y No PEA

S	Pachaca	amac	Luri	in	Chile	ca
Categoría	Personas	%	Personas	%	Personas	%
PEA Ocupada	54.879	64,8	35.595	65	32.336	54,29
PEA Desocupada	3.503	4,1	3.655	6	1.453	2,44
No PEA	26.229	31,1	17.666	29	25.772	43,27
Total	84.611	100%	60.916	100%	59.561	100%

Fuente: INEI PEA y población (2014)

La tabla 3.1.nos muestra que el distrito de Lurín detenta un PEA desocupado mayor que le otorga mejores posibilidades en comparación a los distritos de Pachacámac y Chilca. Además se requerirá tener personal calificado, con estudios técnicos completos y con experiencia para poder desarrollar los diferentes procesos para la obtención del producto terminado. La mano de obra directa y la mano de obra indirecta dará la vigencia que se necesita en el mercado.

d) Disponibilidad de energía

En el proyecto propuesto resulta muy importante contar con electricidad confiable y permanente trifásica requisito que cumplen los tres distritos elegidos para el proyecto.

Las empresas que suministran energía eléctrica para Lima son Edelnor y Luz del Sur.

Tabla 3.2.

Precio por consumo en S/. kWh

Distrito	Tarifa	Precio Unitario S/. kWh
Pachacámac	MT3	0,1871
Lurín	MT3	0,1886
Chilca	MT3	0,1831

Fuente: Luz del Sur (2015)

Elaboración propia

Según la tabla 3.2.los precios unitarios en los tres distritos no tienen una diferencia significativa por lo que se puede concluir que no es un factor condicionante para la elaboración del proyecto.

e) Disponibilidad de Agua

La disponibilidad de agua es importante para realizar las pruebas hidrostáticas del proyecto. Sedapal es la suministradora de este recurso y la

tarifa industrial según tabla 3.3 para los tres distritos es de S/. 4,322 m³ precio unitario y desagüe S/.1,89 precio unitario.

Tabla 3.3.

Tarifa comercial/industrial

Servicio	Rango m ³	$S/./m^3$
Agua	0 a 1.000	4,32
Desagüe	0 a 1.000	1,89

Fuente: Sedapal

f) Servicio de transporte

Las facilidades de transportes están aseguradas ya que estos distritos elegidos cuentan con carreteras asfaltadas y de fácil acceso tales como la Panamericana Norte y la Panamericana Sur. Este fácil acceso permite una fluida comunicación vial con los clientes y proveedores y es un factor importante a tomar en cuenta porque agiliza los movimientos comerciales con el cliente en cuanto a tiempo y espacio. En la tabla 3.4.figura la distancia de cada distrito con la zona de ubicación de los clientes y proveedores.

Tabla 3.4.Distancias hacia distritos de clientes y proveedores (kilómetros)

Distrito	La Victoria	San Isidro	Miraflores	Callao
Pachacámac	41,3	43,6	44,3	48,5
Lurín	32,7	37,8	35,6	47,5
Chilca	66,4	68,6	69,3	73,5

Fuente: Distante Calculator (2015)

g) Terrenos

Los distritos de Pachacámac, Lurín, y Chilca cuentan con zonas industriales para la instalación de la planta de bombas de vacío. En esta elección se debe tomar en cuenta el precio del terreno, acceso a carreteras, servicios de energía, agua y teléfono además de facilidades para obtener los permisos municipales correspondientes. Los precios de los terrenos tanto para venta como para alquiler de locales se encuentran en un rango de ofertas, se tomaron para este análisis una media del rango como se muestra en la tabla 3.5.

Tabla 3.5.

Costo por m² de terreno

Distrito	Costo US \$ / m ²	Alquiler US \$ / m ²
Pachacámac	45	1,00
Lurín	150	3,00
Chilca	65	1,50

Fuente: Cia. Investments S.A.C. (2015)

Elaboración propia

h) Clima

Las condiciones atmosféricas propias de la zona, establecidos por la frecuencia de lluvias, la humedad, la temperatura, etc. influyen en la actividad diaria de la empresa.

Pachacámac, es un valle costeño con una temperatura media de 18° C, con poca humedad.

Lurín, Distrito costeño que se encuentra al sur de Lima posee un clima no muy húmedo con 18° C en promedio a pesar de ser un distrito litoral.

Chilca, se encuentra al sur de Lima el promedio en temperatura de invierno es de 13° centígrados, mientras que en el verano supera los 26 ° C, el clima es templado-cálido.

Según el informe del clima de los tres distritos, Pachacámac, Lurín y Chilca en ese orden estaría la tendencia de la elección.

3.3. Evaluación y selección de localización

3.3.1. Evaluación y selección de la macro localización

Usando la técnica cualitativa de factor preferente, se selecciona al departamento de Lima como la zona privilegiada para la implementación del proyecto.

El departamento de Lima, a diferencia de otros departamentos se encuentra favorecido no solo por su ubicación geográfica equidistante del Norte y del Sur, sino porque aquí se encuentran las principales oficinas del sector minero, el producto puede llegar a los clientes en un menor tiempo de entrega, materia prima o componentes son de mayor calidad y los proveedores con un mayor grado de confiabilidad e inclusive un mejor nivel de servicio, según este precedente industrial nos sitúa a decidir al departamento de Lima como el lugar privilegiado para la instalación del proyecto. En la tabla 3.6.se muestra las oficinas de las mineras.

Tabla 3.6.Ubicación de las oficinas principales de las mineras

Mineras	Dirección
Sociedad Minera el Brocal	Av. Javier Prado Oeste 2173-San Isidro.
Compañía Minera Milpo S.A.A.	Av. San Borja Norte 523-San Borja. Jr. Crane 102- San Borja.
Consorcio Minero Horizonte Empresa Minera Los Quenuales S.A.	Pasaje Los Delfines 159-Surco.
Volcán Compañía Minera S.A.A.	Av. Gregorio Escobedo 710-Jesus María.
Compañía Minera Poderosa Compañía Minera Santa Luisa S.A.	Av. Primavera 834-Surco. Av. República de Panamá 3531-
Compañía Minera Buenaventura	Miraflores. Calle Las Begonias 415-San Isidro.
Shougang Hierro Perú	Av. República de Chile 262-Jesus María.
Votarantim Metais	Carretera Central Km.9.5 Lurigancho.

3.3.2. Evaluación y selección de la micro localización

Factores para la localización de planta:

Tabla 3.7.

Tabla de factores de localización

Item	Factores	Código
1	Proximidad a las MP	A
2	Cercanía al mercado	В
3	Servicio de transporte	C
4	Disponibilidad de MO	D
5	Terrenos	Е
6	Clima	F

Elaboración propia

Según la tabla 3.7.para la localización de planta las materias primas, cercanía al mercado y servicio de transporte son los factores de mayor importancia seguida de mano de obra, terrenos y clima en ese orden.

Tabla 3.8. Matriz de enfrentamiento de factores de localización

	A	В	C	D	E	F	Puntos	%	Ponderación
A		1	1	$\setminus 1$	1	1	5	31,25	31
В	0		1	1	1	1	4	25,00	25
C	0	0		1	1	1	3	18,75	19
D	0	0	0		1	1	2	12,50	13
Е	0	0	0	0		1	1	6,25	6
F	0	0	0	0	1		100	6,25	6
			. , ,	7.1	Δ	Total	16		

Elaboración propia

En tabla 3.9.se muestra la puntuación que se usara en el ranking de factores.

Tabla 3.9. Escala de calificación

Puntuación
10
8
6
4
2

Elaboración propia

Ranking de factores

Tabla 3.10. Matriz de evaluación de localidades

Factores	Ponderación	Pachacámac		Lurí	n	Chilca	
	0/0	Calificación	Puntaje	Calificación	Puntaje	Calificación	Puntaje
A	31	8	248	10	310	6	186
В	25	6	150	8	200	4	100
C	13	6	78	6	78	4	52
D	19	6	114	8	152	6	114
E	6	10	60	6	36	10	60
F	6	8	48	8	48	6	36
Total	100		698		824		548

Elaboración propia

Se evalúo los distritos de Pachacámac, Lurín y Chilca como alternativas posibles para instalar la planta de bomba de vacío utilizando la tabla 3.8. matriz de enfrentamiento de factores y la tabla 3.10. matriz de evaluación de localidades se concluyó que la mejor alternativa de ubicación para la localización optima de la planta es el distrito de Lurín, observando en el análisis que los factores de mayor puntuación son materias primas, mercado y transporte.

CAPÍTULO IV: TAMAÑO DE PLANTA

4.1. Relación tamaño-mercado

La relación tamaño-mercado se define por la demanda que puede alcanzar este proyecto que es de 56 bombas de vacío para el año 2019. Esta cantidad sería la mayor demanda que podría obtener este proyecto.

4.2. Relación Tamaño-recursos productivos

En la fabricación de la bomba de vacío se necesitan fierro fundido, acero, accesorios de control y seguridad. Estos insumos son fabricados en diferentes países del mundo como son Suiza, Alemania, Estados Unidos, Italia, China. En el Perú contamos con fundiciones y empresas que importan productos para la producción de la bomba de vacío por lo que la disponibilidad de insumos es constante, y no es un limitante para la realización del proyecto.

4.3. Relación tamaño-tecnología

Para determinar el tamaño de planta en función de la tecnología ha sido necesario evaluar los diferentes métodos de fabricar las bombas de vacío; se conocen para su elaboración que se pueden emplear maquinas semiautomáticas o máquinas automáticas y en algunas partes del proceso el trabajo manual.

Para este proyecto se ha decidido usar la tecnología semiautomática elaborando el producto en cada una de sus partes y de acuerdo al estudio de tiempos el cuello de botella del proceso lo define el cabezal con una duración de 5.25 días, determinando una producción anual de 60 bombas de vacío

4.4. Relación tamaño-punto de equilibrio

La relación tamaño punto de equilibrio nos dará a conocer si la venta de bombas de vacío es rentable o genera pérdidas que no justificarían la inversión. Es determinante que el tamaño de planta sea mayor que el punto de equilibrio.

Para el cálculo del punto de equilibrio se usa la siguiente formula:

Dónde:

CF = Costos Fijos

P = Precio Unitario

Cv = Costo variable unitario

En la tabla 4.1.se muestran los costos variables, costos fijos y precio unitario.

Tabla 4.1.

Costo fijo, Costo variable y precio de venta.

Detalle	Año 2019 (S/.)	Valor unitario (S/. / bomba)
Costo de MOD	330.541,77	·
Costo de MOI	130.000,00	
Sueldo Administrativo	338.000,00	
Gastos de publicidad	15.240,00	
Depreciación	104.515,62	1
Costo Fijo	918.297,39	RK'
Costo de MP	773.844,46	13.818,65
Costo de electricidad	29.279,73	522,85
Costo de agua	4.348,65	77,65
Servicios	69.120,00	1.234,29
Costo Variable	876.592,84	15.653,44
Precio	46.200,00	

Según estos datos el punto de equilibrio o tamaño mínimo de planta que requerirá el proyecto es de 30 bombas de vacío al año.

4.5. Selección del tamaño de planta

Con los datos detallados anteriormente se puede deducir que el tamaño del proyecto estará limitado por el mercado con 56 bombas de vacío al año, como se muestra en la tabla 4.2.

Tabla 4.2.
Tamaño de planta

Factor	Tamaño planta (u/año)			
Mercado	56			
Recursos productivos	Sin limitaciones			
Tecnología	60			
Punto de equilibrio	30			
Elaboración propia				

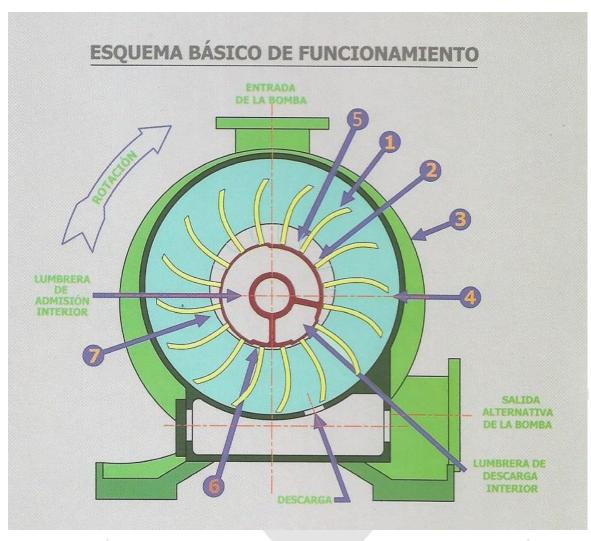
En conclusión, el factor restrictivo es el mercado por lo tanto debemos producir lo que demanda el mercado ya que se tiene la capacidad tecnológica para hacerlo, los recursos productivos necesarios y se encuentra por encima del punto de equilibrio, asegurando ganancias en el proyecto.

SCIENTI

CAPÍTULO V: INGENIERÍA DEL PROYECTO

5.1. Definición del producto basada en sus características de fabricación

La bomba de vacío es un equipo con un rotor (1) en equilibrio dinámico, gira libremente sin contacto metálico alguno, en una caja circular (3) que contiene un líquido, generalmente agua (4). Este rotor (1) es una pieza fundida circular que comprende una serie de paletas orientadas en el sentido de rotación que salen de un cubo cilíndrico hueco a través del cual se ha prensado el eje. Estas paletas están alabeadas a los lados, formando una serie de cámaras o compartimientos.


A partir de un punto A los compartimientos del rodete están llenos de agua. El agua sigue el movimiento rotatorio, pero debido a la fuerza centrífuga se comprime a la periferia de la cámara (3).

El agua, que en A llena el compartimiento del rodete completamente, sale hacia afuera a medida que adelante el rodete, hasta que en (5) el compartimiento del rodete está vacío. Debido a la forma de la cámara, cuya pared se acerca más al rodete, el agua es obligada a volver al compartimiento, de modo que en (6) éste queda lleno de nuevo. Este ciclo se repite en cada revolución. Cuando el agua es forzada fuera del compartimiento en (7) un punto B entra en su lugar aire por la lumbrera de admisión en la pieza cónica (2) que comunica con la entrada de la bomba. El rodete da entonces una vuelta de 360°, el agua vuelve al compartimiento del rodete y el aire que había llenado este compartimiento sale por una de las aberturas que lleva la pieza cónica (2) hacia la salida de la bomba.

La bomba de vacío conectada al sistema del filtro de discos ayuda por intermedio del vacío que el concentrado de mineral tenga un secado que alcanza un porcentaje de humedad de 8% aproximadamente.

Figura 5.1.

Esquema básico del funcionamiento de la bomba de vacío.

SCIENTIA ET PRAXIS

Fuente: NASH Engineering Company (1966)

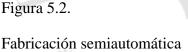
5.1.1 Especificaciones técnicas del producto

Tabla 5.1. Especificaciones Técnicas de calidad de las bombas de vacío

N 1 11 1 4	DOMBA D	EVACIO	Desarrol	<u>—</u>	
Nombre del producto:	BOMBA D	E VACIO	Wiley 1		
Función: Generar vacío		A	Verificado por: Wiley Lescano		
Insumos requeridos: HIERRO FUNDIDO, EJES DE ACERO,		\mathbf{A}_{\cdot}	Autorizado por: Juan Carlos		
RODAMIENTOS, EMPAQUETADURAS			Goñi		
Costos del producto: 8500 DOLARES			Fecha: 20/08/2015		
					1
Características del producto	Tipo	V.N. +/- Tol	Medio de control	Técnica de control	NCA (%)
Presión del vacío	Variable	al nivel del	Vacuómetro	100%	3%
Caudal máximo	Variable	mar 2000 CFM	Anemómetros	100%	3%
Velocidad de rotor	Variable	470-640 RPM	Tacómetro	100%	3%
Presión del agua	Variable	30 PSI	Manómetro	100%	3%
Potencia del motor	Variable	75-125HP	Multímetro	100%	3%
Diámetro del eje	Variable	4 ½ pulgadas	Micrómetro	100%	3%
Diámetro de entrada de agua	Variable	1 ½ pulgadas	Vernier	100%	3%
Velocidad del motor	Variable	1175 RPM	Tacómetro	100%	3%
Diámetro de brida de succión	Variable	6 pulgadas	Vernier	100%	3%
Diámetro de brida de descarga	Variable	5 pulgadas	Vernier	100%	3%
Prueba hidráulica	Variable	150 PSI	Manómetro	100%	3%

5.2. Tecnologías existentes y procesos de producción

5.2.1. Naturaleza de la tecnología requerida


Para la fabricación de bomba de vacío existen dos métodos que son la fabricación automática y la fabricación semiautomática, tomando en cuenta que se necesita una menor inversión en la fabricación semiautomática es considerando como el método más adecuado a emplear en la fabricación de las bombas de vacío.

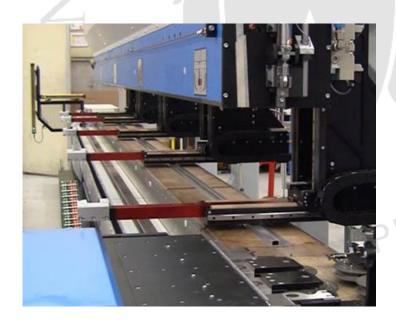
a) Descripción de las tecnologías existentes:

1. Fabricación semiautomática

Es considerado el proceso de producción más empleado en la fabricación de bombas de vacío, el cual se basa en la utilización de máquinas como tornos, mandrino, fresa, taladro, prensa hidráulica y herramientas que necesariamente deben ser controlados por operarios.

La utilización de maquinaria y herramienta de menor costo hace que este proceso en comparación con la producción automática sea menos costoso. El tiempo de fabricación de una bomba de vacío es de 18 a 20 días aproximadamente dependiendo de la dureza del material.

Elaboración propia


2. Fabricación Automatizada

Este proceso de producción se caracteriza porque sus operaciones son más rápidas y precisas en comparación al proceso semiautomático. Usualmente se utiliza para una producción en serie. El tiempo de fabricación de una bomba de vacío se reduce a 7 días.

El sistema de control de este proceso consiste en ingresar los datos del diseño de la bomba de vacío a los respectivos sistemas de fabricación controlados por CNC (control numérico computarizado) como un mandrino cinco ejes, los sistemas CAM (manufactura asistida por computadora) y CAD (diseño asistido por computadoras). La fabricación con ángulos determinados y construcciones con diferentes tipos de ajuste y forma al igual que el ensamble se realiza con equipos controlados por video y con robots automatizados.

Figura 5.3.

Fabricación automatizada

b) Selección de la tecnología

La tabla 5.2 muestra los fundamentos para la elección del método de fabricación de las bombas de vacío.

Tabla 5.2.

Fundamentos de métodos de fabricación

Fundamentos	Tipo de fabricación	
5	Semiautomática	Automática
Inversión	Baja	Alta
Tecnología	Estándar	Alta
Contaminación ambiental	Baja	Baja
Calidad	Alta	Alta

Fuente: Spirax-Sarco (2015)

Elaboración propia

Fundamentos de selección

a) Inversión

La fabricación semiautomática tiene un menor costo de inversión en comparación a la automática por la mano de obra intensiva, por lo que los recursos económicos que se requieran para la implementación de la planta pueden ser asumidos sin dificultad por la empresa.

b) Tecnología

La tecnología necesaria para la fabricación semiautomática se puede adquirir con facilidad en el país debido a que existen en el mercado nacional las máquinas y equipos necesarios para la puesta en marcha del proyecto. Además este tipo de proceso es ideal para la fabricación a pedido y personalizada para cada cliente.

La fabricación automática, por ser compleja y usar tecnología robótica que no tenemos en el país es muy difícil de implementar, además que este tipo de fabricación automática es más para una fabricación en serie siendo los volúmenes de producción altos.

c) Contaminación ambiental

Ambas tecnologías no acarrean contaminación al medio ambiente, con el tratamientos para residuos metálicos se llega a controlar los procesos ambientalmente.

d) Calidad

El proceso de fabricación semiautomática genera un producto de las mismas características en cuanto a calidad y precisión que el proceso automático ya que cumple con todo lo descrito en las especificaciones API 681, manteniendo su efectividad en los dos procesos de fabricación. Se dispone de equipos de medición.

e) Tecnología elegida

Se deduce que la fabricación semiautomática es la ideal para la fabricación de las bombas de vacío tanto por su menor costo de inversión como por el tipo de fabricación de productos a pedido. Finalmente la fabricación semiautomática ofrece un producto de calidad que cumple con todas las normas de fabricación para una bomba de vacío.

5.2.2. Proceso de producción

La tecnología elegida es la fabricación semiautomática, cuyo proceso se describe a continuación:

El tamaño de la bomba de vacío a fabricar será del tipo 2000 ver anexo 4. El fundido de las piezas como los modelos de madera necesarios para esta fundición se realiza por terceros. Estos modelos de madera son diseñados por la empresa y entregados al modelero para su elaboración. Al recibir la empresa los modelos ya terminados estos pasan por una verificación de medidas y si todo esta correcto se le envía los modelos a la fundición para su fabricación. Cada pieza fundida en bruto es

entregada por el proveedor a la empresa con un certificado de calidad que ofrece la garantía de su fabricación.

El proceso de fabricación es el siguiente:

a) Maquinado de piezas

• Cámara o carcasa

Se inicia con la fabricación de la carcasa. Una vez llegada la pieza fundida en bruto esta es trasladada al almacén de la empresa donde se verifican las medidas para luego pasar al proceso de fabricación. La pieza es trasladada al torno vertical donde es maquinada, dándole las medidas tanto en el diámetro exterior como en los diámetros interiores excéntricos.

Cabezales

Son dos cabezales de fierro fundido, las piezas a maquinar uno se denomina cabezal derecho y el otro cabezal izquierdo ambos son iguales, por lo que el procedimiento de fabricación de un cabezal será el mismo que para el otro cabezal. Se recoge del almacén estos cabezales cuyas medidas ya están verificadas y se sube al mandrino el cabezal derecho se maquina un lado de la brida en este caso la entrada de la bomba para que sirva de apoyo y darle la perpendicularidad con respecto a un eje imaginario, se comienza a maquinar el diámetro interior central de manera que pueda encajar con el cono derecho igualmente se maquina las bridas de las salidas alternativas y el diámetro exterior central. En el cabezal izquierdo el procedimiento es el mismo del cabezal derecho.

Conos

Son dos conos de fierro fundido uno se denomina cono derecho y el otro cono izquierdo. Se recogen del almacén estos conos en bruto, cuyas medidas ya están verificadas y se suben al torno horizontal, se inicia maquinando el diámetro interior con el ángulo correspondiente y la orientación hacia el lado derecho con respecto a la abertura de entrada, luego se procede al diámetro exterior de la brida del cono. En el cabezal izquierdo el procedimiento es el mismo, la única diferencia es la orientación de la abertura de entrada esta vez la orientación es a la izquierda.

• Eje

Un eje en bruto de acero AISI 1045 (acero forjado), es sacado del almacén y llevado al área de maestranza. En el torno se realiza un premaquinado para luego ser prensado con el rotor.

Rotor

La pieza fundida en fierro fundido nodular se encuentra en el almacén donde se recoge con las medidas ya verificadas es trasladada al área de maestranza y llevada al Torno horizontal para un pre-maquinado del diámetro interior luego se lleva a una prensa donde se instala el rotor con el eje (previamente procesado) por medio de presión.

• Rotor-eje

Una vez instalado el rotor más el eje, es llevado al torno horizontal donde es maquinado. Posteriormente, esta pieza debe ser llevada a otra empresa donde se realizará el balanceo dinámico, que consta en distribuir equitativamente el peso para evitar que la pieza cabecee (su giro se mantenga uniforme).

Prensa estopa

Seguimos con la fabricación del collarín de prensa estopa estas son dos piezas de fierro fundido en bruto son llevadas al torno horizontal donde se maquinan los diámetros interiores y los asientos de la prensa estopa.

• Tapas

Son cuatro tapas de chumacera en fierro fundido que se encuentran en bruto, una a una se suben al torno horizontal y se maquina los diámetros interiores como exteriores, y los canales interiores.

• Múltiple de entrada

Esta pieza de fierro fundido se recoge del almacén cuyas medidas ya verificadas y se traslada al mandrino maquinando los diámetros exteriores de las bridas del múltiple.

• Múltiple de descarga

Esta pieza de fierro fundido se recoge del almacén cuyas medidas ya verificadas y se traslada al mandrino maquinando los diámetros exteriores de las bridas del múltiple.

b) Perforado

Cámara o carcasa

Como segundo proceso está la perforación de la cámara en el taladro radial, sé perforan 13 agujeros de 5/8"de diámetro, y agujeros de ³/₄" de diámetro.

Cabezales

En el cabezal derecho se perforan en el taladro radial ocho agujeros de ½" de diámetro, 13 agujeros de ¾" de diámetro, 24 agujeros de 13/16" de diámetro, 3 agujeros de ½" de diámetro, 3 agujeros de 1" de diámetro, 2 agujeros de 1¼" de diámetro, 2 agujeros de 5/8".

En el cabezal izquierdo la perforación es igual que en el cabezal derecho.

Conos

En el cono derecho se perforan en el taladro radial ocho agujeros de ¾" de diámetro. El cono izquierdo lo mismo.

Prensa estopa

Se perforara en el taladro radial dos agujeros de 2 17/32" de diámetro y dos agujeros de 3/8" de diámetro en cada prensa estopa.

Tapas

Se perfora en el taladro radial seis agujeros de 9/16" de diámetro, dos agujeros de ½" de diámetro en cada tapa de chumacera.

• Múltiple de entrada

Se perfora en el taladro radial 20 agujeros de 13/16 " de diámetro.

Múltiple de salida

Se perfora en el taladro radial 20 agujeros de 13/16" de diámetro.

c) Fresado

• Eje

Se sube a la fresa para hacerle dos canales chaveteros de 7/8" x 7/8" x 7 13/16" de longitud y un canal chavetero en el extremo de 12mm x 1 3/16".

• Rotor

Se sube al mandrino se le adapta una herramienta y se le hace un canal chavetero al interior del rotor de 7/8"x7/8"x9 ½" de longitud.

d) Roscado

Casco

Roscado manual 13 agujeros de 5/8" de diámetro UNC (rosca corriente), dos roscas NPT para tubo 1 ¼" de diámetro, dos roscas NPT para tubo de 3/4" de diámetro.

Cabezales

Roscado manual de 04 agujeros de 5/8"de diámetro UNC, roscado de 16 agujeros de ½"de diámetro UNC

• Tapas de chumacera

Roscado manual de ocho agujeros rosca NPT para tubo de 1/4" de diámetro.

e) Limpieza de las piezas

Todos los componentes antes de ser llevados al proceso de montaje se les realizan una limpieza con esmeril y con cinceles.

f) Empaquetaduras y lainas

Para el sellado de la bomba se utiliza empaquetaduras y lainas.

El material es trazado de acuerdo a las medidas requeridas, para luego ser cortado. Dependiendo del tipo de empaquetadura (grafitada o Vitorite) será trenzada o perforada.

g) Montaje.

El montaje se realiza de acuerdo a una secuencia como se muestra en el anexo 2.

h) Prueba hidrostática.

Una vez maquinada la carcasa, se efectúa una prueba hidrostática para verificar que no exista fugas. La prueba hidrostática se realiza a una presión de 150 PSI de acuerdo a la norma API.

i) Prueba de funcionamiento

Se realiza una vez hecho el montaje la bomba de vacío se sube en un banco de pruebas que consta de un motor de 125 HP una bomba de agua y conexiones de tuberías, dos manómetros y un vacuómetro.

j) Pintado.

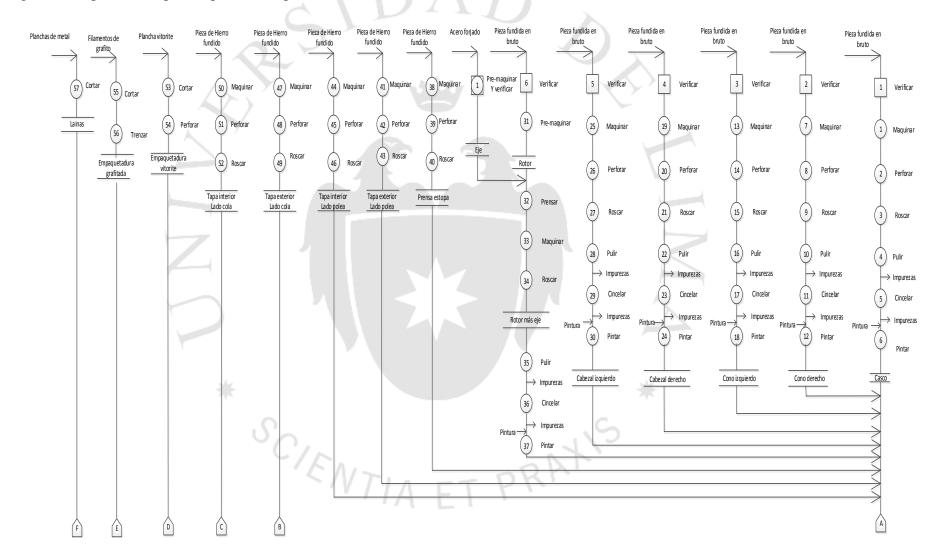

Terminada la prueba de funcionamiento, se pasa al área de pintado aplicando una capa de pintura anticorrosiva y una capa de pintura de acabado.

Diagrama de operaciones del proceso: DOP
 Se muestra en la figura 5.4. el diagrama de operaciones

SCIENTIA

Figura 5.4.

Diagrama de operaciones para el proceso de producción de bombas de vacío

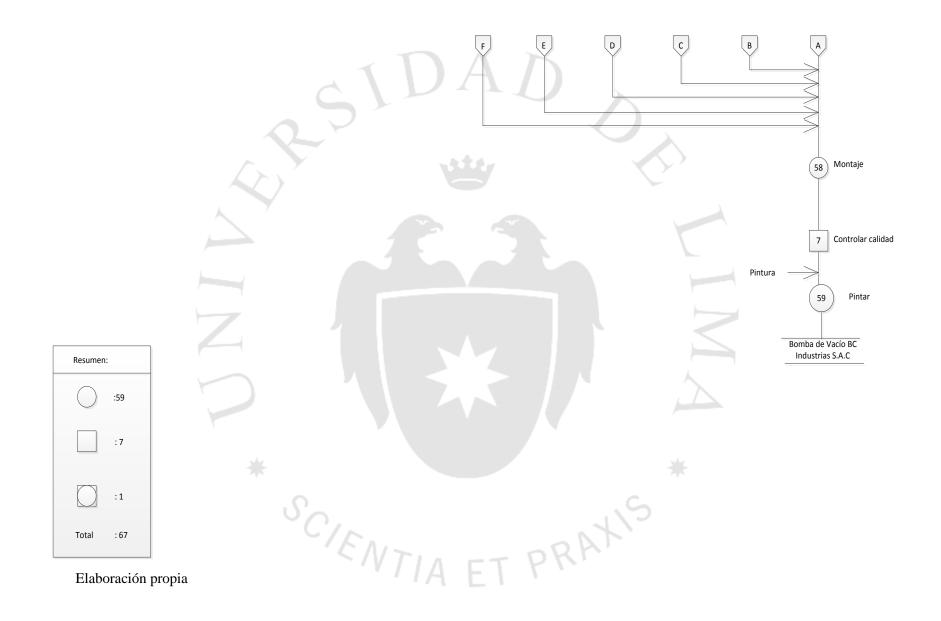


Figura 5.5.
Diagrama de Gozinto

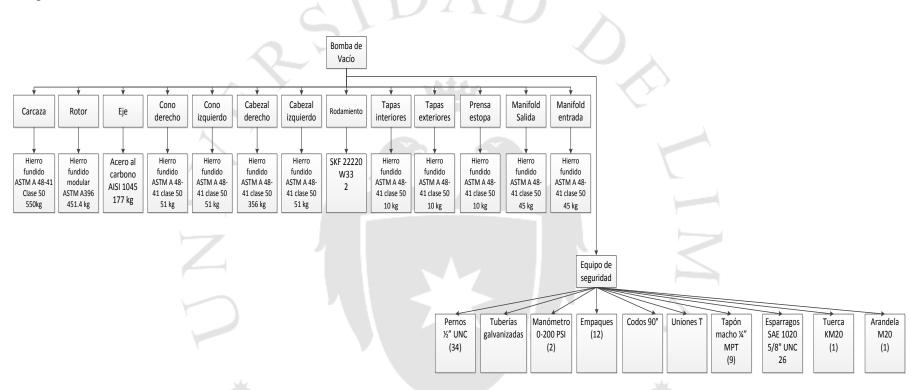


Tabla 5.3. Materia prima

Item	Materia prima	Descripción	Cantidad	Proveedor	Unidad de medida
1	Hierro fundido A-48-41 clase 50	Casco	1	FUNCAL	Kg
2	Hierro fundido nodular ASTM A-396	Rotor	1	FUNCAL	Kg
3	Hierro fundido A-48-41 clase 50	Cabezales	2	FUNCAL	Kg
4	Hierro fundido A-48-41 clase 50	Conos	2	FUNCAL	Kg
5	Hierro fundido A-48-41 clase 50	Tapas	4	FUNCAL	Kg
6	Hierro fundido A-48-41 clase 50	Múltiple	2	FUNCAL	Kg
7	Hierro fundido A-48-41 clase 50	Prensa estopa	2	FUNCAL	Kg
8	Ácero al carbono AISI 1045	Eje	1	BOHLER	Kg
9	Ácero al carbono AISI 1045	Chaveta	2	BOHLER	Kg
10	Rodamiento 22220 CC/WW33	Rodamientos	2	SKF	Unidad
11	Plancha de acero	Lainas	4	YOHERSA	Kg
12	Tuerca KM 20	Equipos de seguridad	1	SKF	Unidad
13	Arandela MB 20	Equipos de seguridad	1	SKF	Unidad
14	Obturaciones de fieltro	Equipos de seguridad	4	EMACIN SAC	Unidad
15	Empaquetaduras de grafito	Equipos de seguridad	12	EMACIN SAC	Metro
16	Pernos ½"UNC	Equipos de seguridad	34	ACRIMSA	Unidad
17	Espárragos SAE 1020 5/8"UNC	Equipos de seguridad	26	ACRIMSA	Unidad
18	Tapón macho ¼" NPT	Equipos de seguridad	09	CAMPORSAL	Unidad
19	Válvula de seguridad de 1 1/2"	Equipos de seguridad	03	CAMPORSAL	Unidad
20	Tuberías y codos 1 ½"	Equipos de seguridad	08	FIDERSA	Metro

Fuente: FMI (2014)
Elaboración propia

5.3. Características de las instalaciones y equipos

5.3.1. Selección de la maquinaria y equipo

La empresa que proveerá de la maquinaria y equipo será Inversiones Sutti S.A.C. que es una importadora de maquinarias para la industria metal mecánica.

Los equipos involucrados en el proceso son los siguientes:

Tabla 5.4.
Equipos a utilizar

Máquinas o Equipos Principales	Máquinas o EquiposAuxiliares
Torno paralelo	Prensa hidráulica
Torno vertical	Bomba hidráulica manual
Mandrino	Amoladora angular
Fresadora	Tecle 3 t
Taladro radial	Montacarga 4 t
	Equipo de prueba
	Equipo completo de pintura incluido el
	compresor horizontal

Elaboración propia

5.3.2. Especificaciones de la maquinaria

En la tabla 5.5. se muestran las maquinarias y equipos que se usaran en el proyecto.

Tabla 5.5.
Especificaciones de maquinaria y equipos

Equipo	Especificaciones	
	Modelo	GH12
	Distancia entre	2.000 mm
	puntos Ancho de la	450 mm
	bancada Diámetro Max. en el Husillo	104 mm
	Volteo sobre la bancada	750 mm
Torno paralelo	Volteo sobre el escote	1050
	Motor	5 HP
	Peso neto/ bruto	3.100/3.400 Kg
	(Kg)	5.100/5.400 Kg
	Dimensiones	Largo: 4,2 m
	Difficusiones	Ancho: 1,2m
		Alto: 1,35 m
	Precio	\$ 16.000,00
	TICCIO	\$ 10.000,00
	Fuente: Inversione	s Sutti SAC
	N 11	
	Modelo	Stanko Folio:
	V-14	DSAT 1526
	Volteo	1.600 mm
	Diámetro del	1400 mm
	plato	1 000
	Altura de trabajo	1.000 mm
Torno vertical	Peso de la	19 t
romo verticar	maquina	5.4
	Peso de la pieza	5 t
	Medidas	Largo: 4m Ancho: 3,5 m
		Altura: 4 m
	Precio	\$ 35.000,00
	110010	φ <i>55.</i> 000,00
C	Fuente: Inversione	es Sutti SAC
	U/A.	
	Marca	Campell
	Medidas	Largo: 0,50 m
Equipo completo		Ancho: 0,50 m
de pintura		Altura: 0,50 m
F	Precio	\$ 780,00
	Fuente: EDIPESA	

	Modelo	MV 1415201 C&E
	Mesa giratoria	990 - 1 002 2
	Recorrido	889 x 1.092,2 (x): 40"
	transversal	()
	Recorrido	(y): 40"
	vertical	()). 10
	Recorrido	(z):55"
	horizontal	
Mandrino	Cámara del	$(w): 29\frac{1}{2}$ "
	husillo	
	Motor	5.5 Kw
	Dimensiones	Largo: 5,08 m
		Ancho: 2,54 m
		Alto: 2,79 m
	Precio	\$ 40.000,00
	Fuente: Inversione	s Sutti SAC
		D.1142 1.D.100
<i>^</i> .	Modelo	RAM2 AB 100
	Medidas	Largo: 1 m
		Ancho: 1 m
	a	Alto: 4 m
	Capacidad	100 t
Prensa hidráulica	Bancada (área de	Al frente: 600 mm
	trabajo)	Al fondo: 600 mm
	Recorrido de los	1.000 mm
	pistones Precio	\$2,000,00
	Precio	\$3.000,00
	Fuente: Inversiones	S Sutti SAC
	Modelo	ENERPAC
	Presión	500 PSI
	Capacidad	400 litros
	Peso	13 Kg
Bomba	Dimensiones	Largo: 0,630 m
hidráulica manual		Ancho: 0,540 m
		Altura: 0,980 m
	Precio	\$ 200
	T . IDMI	
	Fuente: UNIMAQ	
	Modelo	BOSH. GWS 26-
	MIOUEIO	180 LVl profesional
	Potencia	2600 w
	Maximo Ø de	180 mm
	disco	100 IIIII
Amoladora	Rosca	MI4
angular 7"	Peso	
	Peso Dimensiones	5,51 g
	Dimensiones	Largo: 0,49 m Ancho: 0,20 m
	Precio	\$ 180,00
	1 10010	ψ 100,00
	Fuente: EDIPESA	

	Modelo	Truper
	Capacidad	3 t
	Eleva standard	3 m
	Accionamiento	70 eslb
	de cadena para	
	levantar 1m	
	Tensión en	36 N
Tecle	cadena de	
10010	almacenamiento	
	a plena capacidad	
	Capacidad de	2
	numero de	
	rodamientos	26 W.
	Peso	26 Kg
	Precio	\$ 163,40
	Fuente: FEINMAS	AC
	Marca	Caterpillar RG24
	Capacidad de	3 t
	carga	1.0
	Capacidad de	4,8 m
Mantagana	elevación Combustible	Gas / Gasolina
Montacarga	Dimensiones	
	Difficusiones	Largo: 2,70 m Ancho: 1,30 m
		Altura: 2,20 m
	Precio	\$ 13.000,00

Fuente: ZAPLER

	i delite. Zi ii Ellit		i
	Marca	FAMA TR 38/750	
	Distancia mínima	282 a 1.110 mm	
()	entre la nariz del		
	usillo y la placa		
	base		
Taladro Radial	Dimensión de la	550 x 405 x 305	
Talaulo Kaulai	mesa	mm	

Dimensiones

Largo: 1,43 m Ancho:0,82 m Altura: 2,06 m

Precio \$ 11.000,00

Fuente: Inversiones Sutti SAC

	- / / /	7/ 57
	Marca	DARJE
	Modelo	FUC-7
	Dim. de la mesa	1,3 m x 0,30 m
	Dimensiones	Largo: 2,29 m
Fresadora		Ancho: 1,77 m
		Altura: 2 m
	Recorrido	900 x 280 x 450
		mm
	Precio	\$ 10.000,00

Fuente: Inversiones Sutti SAC

5.4. Capacidad instalada

5.4.1. Calculo de la capacidad instalada

Para que el proyecto sea viable la empresa debe tener una producción 56 bombasde vacío al año, operando en un solo turno de 8 horas de trabajo.

En la tabla 5.6.se muestra las actividades y sus tiempos para fabricar una bomba de vacío.

Tabla 5.6

Actividad para fabricar una bomba de vacío

	_ `	
Numero	Actividades	Tiempo (días)
1	Maquinado de carcaza en torno vertical	2.5
2	Pre maquinado de rotor en torno paralelo	2
3	Pre maquinado de eje en torno paralelo	1
4	Mecanizado de conos en torno paralelo	0,75
5	Mecanizado de tapas en torno paralelo	0,38
6	Mecanizado de cabezales en mandrino	3,5
7	Mecanizado de prensa estopa en fresa	0,12
8	Mecanizado de manifole en mandrino	0,5
9	Prensado de eje con rotor	0,38
10	Mecanizado de eje con rotor en torno paralelo	4
11	Perforado de carcaza en taladro radial	0,5
12	Mecanizado en mandrino de canal chavetero en el rotor	0,75
13	Mecanizado de canal chavetero en eje con rotor en fresa	0,5
14	Mecanizado de chavetas en fresa	0,5
15	Perforado de conos en taladro	0,13
16	Perforado de tapas en taladro	0,09
17	Perforado de cabezales en taladro	1
18	Perforado de manifole en mandrino	0,38
19	Perforado de prensa estopa en taladro	0,04
20	Trenzado de empaquetadura de teflón	0,09
21	Roscado en carcaza	0,5
22	Roscado en tapas	0,12
23	Roscado de cabezales	0,5
24	Limpieza con esmeril y cincel casco	0,09
25	Limpieza con esmeril y cincel cono	0,04
26	Limpieza con esmeril y cincel tapas	0,04
27	Limpieza con esmeril y cincel cabezales	0,25
28	Limpieza con esmeril y cincel manifold	0,04
29	Montaje	1
30	Prueba hidrostática	1
31	Prueba de funcionamiento	1
32	Pintado general	0,13
	Total	23,83
	10111	23,03

Evaluación del número de estaciones:

-Producción anual: 56 bombas de vacío

-Número de unidades por mes: 4.67

Tiempo de cadencia:

1

Número mínimo de estaciones:

$$N = -----= 4,76 = 5$$
 Estaciones

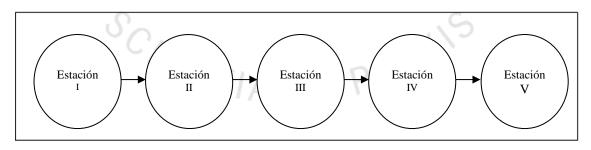
5

Tabla 5.7.

Tiempo total por bomba de vacío

Piezas de bomba de vacío	Actividad de fabricación	Tiempo total (días)
Casco	1,11,21,24,30	4,59
Rotor	2,12	2,75
Eje	3	1
Conos	4,15,25	0,92
Tapas	5,16,22,26	0,64
Cabezales	6,17,23,27	5,25
Collarín de prensa estopa	7,19	0,17
Manifold	8,18,28	0,92
Eje-rotor	9,10,13	4,88
Chavetas	14	0,5
Trenzado empaquetadura	20	0,09
Montaje	29	1
Prueba de funcionamiento	31	1
Pintado general	32	0,13
-	Total	23,83

En la tabla 5.8.se muestra la asignación de tareas a las estaciones, tomando en consideración los mayores tiempos de ejecución de estas y respetando la precedencia de las tareas.


Tabla 5.8.
Asignación de tareas a estaciones

Estación	Número de operaciones asignadas	Ti (Días)	Tiempo de la Estación
I	1, 30, 11,21	4,5	4,5
II	2, 3, 4, 5, 9, 15, 16, 22, 25, 26	4,928	4,93
III	6, 8, 17,	5	5
IV	10, 12,	4,75	4,75
V	7, 14,13,18, 19, 20,23, 24, 27,	4,647	4,65
	28, 29, 31, 32		

Elaboración propia

Según la asignación de tareas de la tabla 5.8. se realiza el esquema con la unión de estaciones como se muestra en la figura 5.6.

Figura 5.6.
Unión de estaciones

5.4.2. Calculo detallado del número de máquinas requeridas

Para definir el número de máquinas a solicitar y cumplir con el tamaño de planta, se considera un factor de utilización de 0,95 para la maquinaria y un factor de eficiencia de 0,9.

Para el cálculo del número de máquinas requeridas en el proceso de fabricación se utilizó la siguiente formula.

$$N^{\circ}$$
 Maquinas =
$$\frac{P \times T}{Factores \times H}$$

Dónde:

P: Cantidad a procesar requerida (unid. / año)

T: Tiempo estándar por unidad (NHE-M /unid.)

H: Tiempo en el periodo (días por año)

U: Unidades

Factores de Eficiencia y Utilización:

Utilización:

$$\frac{\text{NHP}}{}=\frac{\text{Tiempo de trabajo-(T. Refrigerio} + \text{T. Ocioso} + \text{T. Mantenimiento})}{\text{NHR}}=\frac{456 \text{ min.}}{}=0,95$$

NHR N° Horas Reales 480 min.

Eficiencia:

$$\frac{\text{NHE}}{\text{NHP}} = \frac{\text{N}^{\circ}\text{U x T.C. Unitario}}{\text{T. Productivo Empleado}} = \frac{1 \text{ u x 2880 min.}}{3200 \text{ min.}} = 0,90$$

Se considera el último año del proyecto para el cálculo del número de máquinas requeridas por ser el año de mayor demanda.

Tabla 5.9.

Cálculo del número de máquinas y/u operarios

Actividades	Cantidad a procesar (u/año)	Tiempo estándar por unidad (d/u)	Dias/ Semana	Factor de utilización	Factor de eficiencia	# Maq.	# Operario
Torno paralelo	56	8,13	6	0,95	0,90	2	2
Torno vertical	56	2,50	6	0,95	0,90	1	1
Mandrino	56	5,13	6	0,95	0,90	1	1
Fresadora	56	1,13	6	0,95	0,90	1	1
Taladro radial	56	1,76	6	0,95	0,90	1	1
Esmeril	56	0,47	6	0,95	0,90	1	1
Roscado	56	1,13	6	-	0,90	-	
Prensa hidráulica	56	0,38	6	0,95	0,90	1	1
Montaje	56	-1	6	- 1	0,90	- \	
Pruebas	56	1	6	- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	0,90	-	
Pintores	56	0,13	6	-	0,90	-	1

Elaboración propia

5.5. Resguardo de la calidad

5.5.1. Calidad de la materia prima y de los insumos

a) Calidad en la materia prima e insumos

En esta fabricación las dos materias primas principales son la fundición en hierro fundido A-48-41 clase 50 el hierro fundido nodular ASTM A-396 y el acero al carbono AISI 1045.A continuación se muestran según la tabla 5.10.; 5.11.; 5.12.; 5.13.; 5.14.las propiedades químicas y propiedades físicas de las materias primas principales.

Tabla 5.10.

Composición química de la fundición

	Especificaciones	Composición Química (%) por ciento									
Material	Equivalentes	C	Mn	Cr	Mo	P	S	Si	Cu		
Hierro	ASTM A-48-41	2,9	1,5	0,8	0,5		0,08	0,10	1,0		
fundido laminar	CLASE 50	3,1	1,7	1,0	Max.		Max.	Max.	Max		
Hierro		3,5	2,2	0,6		0,2	0,06	0,04	0,5		
fundido	ASTM A-396	3,8	2,6	0,8		0,5	Max.	Max.	Max		
nodular											

Fuente: Mepsa (2014)

Elaboración propia

Tabla 5.11.

Propiedades físicas de la fundición

				Pro	piedade	es Físicas			
Material	Especificación equivalente	Límite Rotu		Límit Flue		ELONG	R. A.	Dur	eza
		Lbs/pulg ²	Kg/ mm ²	Lbs/ pulg ²	Kg/ mm ²	%	%	BHN	R.C
Hierro	ASTM A-48-							200	95
fundido	41	50.000	35,0			- 			
laminar Hierro	CLASE 50	VT.		1	RA	74,		240	21
	ACTM A 206	100.000	70.0	<i>65</i> ,000	45.0			200	95
fundido nodular	ASTM A-396	100.000	70,0	65.000	45,0			240	21

Fuente: Mepsa (2014)

Tabla 5.12.Composición química del acero AISI 1045

		Co	mpos	sición	Quín	nica	(%) p	or cie	nto
Material	Especificaciones	C	Cr	Si	Mn	Ni	Mo	S	P
Acero al carbono	AISI 1045	0,45	0,3	0,3	0,7	0,3	0,1	0,03	0,03
Color d	le identificación			Roj	o – Bl	anco-	Rojo		
Estado	de suministro	リ	D	ureza	natura	al 193	B HP N	Лах	

Fuente: Aceros Böhler (2014)

Elaboración propia

Tabla 5.13.

Propiedades físicas del acero

					Propiedades	Físicas	
Material E	Especificaciones	Estado	Diámetro (mm)	Límite de Fluencia	Resistencia tracción N/mm ²		ntracción Min %
Acero al	3	Natural	_	370	650	15	35
	AISI 1045	D	16 – 100	340	650 - 750	17	35
carbono		Recocer	100- 250	330	580 - 700	18	

Fuente: Aceros Böhler (2014)

Tabla 5.14.
Propiedades físicas del rodamiento

Material	Especificaciones	Dureza HRC	Medidas (d,D,B)	Capacidad de carga dinámica (N)	Capacidad de carga estática (N)	Limite de velocidad RPM	Masa Kg.
Acero al	22220 C/W33	59-65	100x180x46	270.000	236.000	2.400	4,5
cromo							

Fuente: SKF (2015)

La elección del proveedor para la fundición y el acero se basa en una visita previa a sus instalaciones y ver si tiene la tecnología, personal y certificados adecuados que garantice que la materia prima cumpla con las especificaciones técnicas solicitadas ver anexo 3.

Los rodamientos son considerados también como insumos importantes. Los proveedores elegidos son aquellos que cuenten con la representación de las principales marcas que fabrican los rodamientos y garanticen con certificados de calidad la venta de estos productos.

Finalmente, antes de proceder a la fabricación de la bomba de vacío todas estas materias primas e insumos pasarán por una inspección del departamento de calidad que otorgara una conformidad del buen funcionamiento de los componentes.

b) Calidad en el proceso

Es importante verificar que la carcasa de fierro fundido no tenga ninguna fisura y rechupes que permita una fuga de agua por lo que se realizara una prueba hidrostática para evitar sobrecostos dentro del proceso. Se envía a un tercero a balancear el rotor-eje remitiendo el proveedor el protocolo de calidad de balanceo. Se verificará con instrumentos de medición como calibradores, micrómetros cada uno de los componentes de la bomba de vacío, como el juego axial del rodete con la carcaza así como el ángulo y la distancia entre el cono y el rotor.

c) Calidad del producto

La calidad de la bomba de vacío será sustentada mediante verificaciones en el cumplimiento de las especificaciones técnicas del producto, dimensionamiento y óptimo funcionamiento de la bomba de vacío.

El vacío producido por la bomba de vacío debe ser uniforme, exento de fluctuaciones para que dé lugar a la obtención de un filtrado homogéneo y un producto uniforme para lo cual el caudal de vacío se verificará mediante una placa de orificio.

Finalmente se tomará atención en el almacenaje, las bombas de vacío estarán en un lugar cerrado, limpio, seco y libre de vibraciones. Evitar que la temperatura descienda los 5°C y cada 3 meses girar con la mano el eje de la bomba y evitar incrustaciones y gripajes.

5.5.2. Medidas de resguardo de la calidad en la producción

Para el resguardo de la calidad del producto se realizará acciones que eliminen o reduzcan la posibilidad de algún tipo de falla que afecte la credibilidad del producto. A continuación, se muestra la matriz de análisis de no cumplimiento de los parámetros establecidos en el código API, donde se indican diferentes procedimientos durante el proceso de producción.

Tabla 5.15.

Análisis de desviaciones en los parámetros del código API 681

Etomog dol	Domórmotros	Efector do	Madidas programticas
Etapas del Proceso	Parámetros	Efectos de desviación	Medidas preventivas
110000		uesviacion	
Fundición	API 681	Baja resistencia	La colada de la
	ASTM A-48-41	de la fundición.	fundición debe cumplir con las
	ASTM A-396		especificaciones
			normadas por el código ASTM
Prueba	100-125 PSI	Probable fuga de	Remplazar casco
hidrostática		agua en las paredes del casco.	C
0.0		paredes del casco.	1/2
Balanceo	ISO 1940	Desequilibrio	Equilibrar
dinámico	CNT	en el eje-rotor se	eje-rotor
	1/V / / A	produce vibración	aplicación G 6.3
Prueba	125 PSI	Calentamiento,	Cumplir el protocolo
funcionamiento	1800 CFM	vibración,	de las bombas de
	1000 C1 W	dirección del giro	vacío descrito en el
		y no producir el	código API 681
		vacío requerido.	

Fuente: FMI (2014) Elaboración propia

5.6. Estudio de Impacto Ambiental

Los procesos de mecanizado producen un gran impacto ambiental a los cuales sele debe dar una disposición de acuerdo a la normativa vigente NTC-ISO 14001, en estos casos es necesario identificar una matriz de aspectos e impactos ambientales donde se identifican aspectos, actividades, valoración y disposición de los recursos utilizados.

Los grupos de materiales de mayor interés son los constituidos por fierro fundido y acero que son los componentes principales de nuestro proyecto. Se establecerán las actividades que permitan identificar y evaluar los aspectos e impactos ambientales relacionados con la administración, operación y mantenimiento dela planta y aquello sobre lo que se pueda tener influencia con el fin de determinar aquellos que tienen o pueden tener impacto significativo sobre el medio ambiente.

De acuerdo a lo mencionado se realiza una matriz de identificación y evaluación de impactos ambientales según se muestra en la tabla 5.16.

Tabla 5.16.

Matriz de identificación y evaluación de impactos ambientales

					(OPERACIO	ÓN		
FACTORES AMBIENTALES	N°	ELEMENTOS AMBIENTALES	MECANIZADO	ESMERILIZADO Y LIMPIEZA	PRENSA HIDRAULICA	PRUEBA HIDROSTÁTICA	ENSAMBLAJE	PRUEBA DE COMBA DE VACIO	PINTADO
	Е	EMISION ATMOSFERICA							
	E1	Contaminación por disolventes procedentes de operaciones de desengrase, fluidos de corte	-0,68	-0,68					-0,68
	E2	Contaminación del aire por polvos y partículas en el proceso de mecanizado	-0,65	-0,65					
	Α	AGUA							
	A1	Contaminación del agua por los fluidos (refrigerantes) de corte	-0,45						
	A2	Contaminación del agua por limpieza de equipos y baldeos de suelos							-0,45
	C	CONSUMO DE MATERIA PRIMA							
FISICO	C1	Contaminación por los fluidos de corte(lubricación impregnada en las piezas mecanizadas y en la viruta)	-0,45	-0,45					
COMPONENETE AMBIENTAL MEDIO FISICO	C2	Contaminación por las herramientas de corte(abrasivos, cintas, trapos, cepillos, lijas)	-0,45	-0,45			-0,45		
AM	R	RUIDO							
ENETE	R1	Contaminación por el mecanizado por rectificado.	-0,60						
COMPON	R2	Contaminación por mecanizado con herramientas metálicas.		-0,60	-0,60		-0,50		
3	P	ENERGIA							
	P1	Electricidad utilizada en el proceso de mecanizado	-0,58	-0,58	-0,58	,5		-0,58	-0,48
	P2	Electricidad utilizada para iluminación, acondicionamiento y ventilación de las áreas de trabajo.	-0,50	-0,50	-0,50		-0,40	-0,50	-0,50
	S	SEGURIDAD Y SALUD							
MEDIO SOCIOECONOMICO	S1	Riesgo del personal al manipular herramientas y maquinas	-0,65	-0,65	-0,65	-0,65	-0,65	-0,65	-0,65
MEDIO	S2	Riesgo de aspiración de partículas por el personal	-0,65	-0,65					-0,65
OCI	M	ECONOMIA							
Ø	M1	Generación de empleo local	0,85	0,85	0,85	0,85	0,85	0,85	0,85

Naturaleza: Positivo (+) y negativo (-)

Significancia	Valoración
No Relevante (1)	0,10 hasta 0,39
Leve (2)	0,40 hasta 0,49
Moderado (3)	0,50 hasta 0,59
Grave(4)	0,60 hasta 0,69
Critico (5)	0,70 hasta 1,0

Elaboración propia

Según el cuadro anterior los problemas más importantes respecto al medioambiente son la generación de residuos generados a partir de los usos de fluidos de trabajo (lubricantes y enfriamiento) y del medio socio-económico el riesgo dela aspiración de partículas por el personal y el manipuleo de máquinas y herramientas. Como un aspecto positivo tenemos la generación de empleo.

5.7. Seguridad y Salud Ocupacional

El objetivo de una empresa es dar valor a un producto final contando con un sistema de gestión de seguridad y salud ocupacional que permita el control de la seguridad de sus procesos y la protección de salud de sus trabajadores minimizando el riesgo de accidentes y pérdidas humanas. La instalación y funcionamiento de la planta cumplirá con los requisitos de la legislación vigente Ley 30222 y las normas OSHAS 18001 así como la política, objetivos, responsabilidades, y referencia a los documentos que soportan al sistema.

Se creara un Comité de Seguridad y Salud en el Trabajo que será el ente promotor, consultor y de control de las actividades orientadas a la prevención de riesgos y protección de la salud de los trabajadores.

Previo al inicio de las operaciones se hará una distribución de las maquinasherramientas fijas y herramientas manuales que se utilizaran en los trabajos desarrollados dentro del proceso productivo. Igualmente se establecerá e implementara los métodos y actividades que se deben realizar en estos, y los riesgos que existen en cada uno de ellos.

Para controlar variables que garanticen un ambiente seguro, en primer lugar tendríamos a desarrollar una distribución general de conjunto, teniendo estos datos comenzaremos a medir los niveles de ruido. Según las normas OSHAS18001 y la ley 30222 los decibeles permitidos para 8 horas son de 85 DB.

Observando el proceso productivo se evidencia que el uso de máquinas herramientas como los tornos, mandrinos, taladro radial, esmeriles y otros, el rango de ruido que generan están entre los 95 a 110 DB, por lo que se distribuirá equipos de protección (EPP) como tapones para el oído a los operarios de planta cuyo uso será obligatorio para la protección de la salud de los trabajadores.

Otra de las variable a medir será la iluminación que se necesitara en el área de mecanizado y en los diferentes procesos de producción por lo que una iluminación adecuada será una combinación de alumbrado general y alumbrado localizado.

A continuación en la tabla 5.17.se observa el análisis preliminar de riesgos en alguna de las operaciones del proceso.

SCIENTIA

Tabla 5.17.

Identificación preliminar de peligros y evaluación de riesgos

	DENTIFI	CACION DE PEL	IGROS				EV	VALUA	CION 1	DE RII	ESGOS		
	DENTIFIC	CHCIOI V DE I EE	ionos		Severid	lad (S)		I	Probabi	lidad (I	?)		
N°	Actividad	Peligro	Consecuencia riesgos	leve	moderado	grave	catastrófico	excepcional	bajo	moderado	alto	Potencia de riesgo	Medidas de control a implementar
1°	Mecanizado	1 Atrapamiento de partes corporales.	Lesiones o golpes en partes del cuerpo.		A	Х	7		X			Alto	EPP, capacitación y señales de seguridad.
		2Golpes por manejo o deslizamiento del material.	Lesiones en parte del cuerpo.		X				X			Medio	Casco, uniforme, capacitación y señales de seguridad.
	4	3Contactos eléctricos.	Shock eléctrico.			X			X			Alto	Zapatos dieléctricos, capacitación.
		4Salpicadura de virutas	Irritación, perdida visual.		X				X			Medio	Lentes, capacitación y señales.
		5Residuos metálicos en el piso.	Lesiones por caídas o incrustaciones.	X					X			Bajo	Orden y limpieza en los espacios de trabajo.
		6Ruidos.	Daños al oído/fatiga.	X					X			Bajo	Protección auditiva, capacitación y señales de seguridad.
		7Salientes de máquinas, equipos o instalaciones.	Lesiones o golpes en partes del cuerpo.		X				x			Medio	Elementos de EEP, capacitación y señales de seguridad.
		8Estrés	Tensión, bajo rendimiento laboral		X					X		Medio	Técnicas de relajamiento, masajes corporales, descanso.
2°	Mecánica, Mantenimiento y armado de equipos.	1Golpes por manejo o deslizamiento de material.	Lesiones en parte del cuerpo		х				X		O	Medio	EPP, capacitación y señales de seguridad.
		2Ruidos.	Daños al oído/fatiga.		X		P		X			Medio	Protección auditiva, capacitación señales de seguridad.
		3 Sobreesfuerzos.	Lesiones musculares o a la columna.		X				X			Medio	Técnicas de relajación, masajes corporales, descanso.
		4 Herramientas.	Golpes en partes del cuerpo.		X					X		Medio	Guantes, EPP, capacitación.
		5Motores prendidos.	Lesiones, mutilaciones.			X			X			Medio	Instalación de guardas a fajas, EPP.

3°	Mantenimiento eléctrico	1Shock eléctrico.	Quemaduras, muerte.			X			X		Alto	Zapatos dieléctricos, EPP, capacitación.
4°	Esmerilado.	1.Ruido	Daños al oído, fatiga			x			x		Alto	Protección auditiva, capacitación y señales de seguridad.
		2Chispa y/o partículas calientes en ojos.	Ardor/irritación en ojos.			х			x		Alto	Lentes, capacitación y señales de capacitación.
		3Pulido, aireado.	Ardor/irritación en ojos, intoxicación, asfixia, inhalación de sustancias peligrosas.		x		7		X		Medio	Lentes, mascarilla, capacitación y señales de seguridad.
5°	Montaje.	1Falta de aseguramiento o atrincado del material para armar.	Lesiones o golpes en partes del cuerpo.		Δ.	x	L	x	×		Medio	EPP, capacitación y señales de seguridad.
	4	2Trabajos de altura.	Golpes en partes del cuerpo, fractura, muerte.			x		х			Medio	EPP, arnés, capacitación, señales de seguridad.
6°	Pintura.	1Exposición a sustancias tóxicas.	Irritación a los ojos, intoxicación.		х					X	Alto	Lentes, mascarillas, capacitación, señales de seguridad.
7°	Oficinas Administrativas.	1Iluminación.	Cansancio.		х				x		Medio	Control de medida de iluminación en oficina.
		2Posturas forzadas partes corporales.	Lesiones musculares o a la columna.		х				x		Medio	Descanso, capacitación, técnicas de relajación, masajes.
		3Monotonía en la labor.	Aburrimiento, bajo rendimiento	х					x		Bajo	Horarios rotativos, labores rotativas.
		4Estrés.	Tensión, bajo rendimiento laboral.		X					x	 Medio	Descanso, técnica de relajación, masajes, horarios rotativos o labor rotativa.
		5Contactos eléctricos.	Shock eléctrico, que maduras.		_	x			x		Medio	Buenas instalaciones, aislamientos.
		6 Computadora.	Fatiga visual, cansancio.		x		1		X		Medio	Descanso con otra labor por 10 minutos por cada hora de computadora.
		7 Escaleras.	Caída.		X				X		Medio	Capacitación, señales de seguridad.

Fuente: FMI (2014) Elaboración propia

5.8. Sistema de mantenimiento

El área de mantenimiento de las instalaciones y equipos de la planta es de primordial importancia para asegurar la seguridad de los trabajadores y su adecuado funcionamiento.

Las estrategias de mantenimiento son muy apropiadas porque nos permite garantizar la seguridad, evitando costos excesivamente elevados como son la perdida de producción, deficiencias en la calidad, oportunidad de entrega, productividad y cuidado con el medio ambiente en las plantas de producción. Además de reducir los costos de mantenimiento, prolonga la vida útil de los activos.

Los mantenimientos a usar en este proyecto son el mantenimiento predictivo para reemplazar o reparar partes antes que empiecen a fallar y mantenimiento preventivo para mantener un nivel de servicio en los equipos programando las intervenciones de sus puntos vulnerables en el momento más oportuno. Las herramientas y repuestos necesarios para su mantenimiento se encontrara en el almacén general.

En la tabla 5.18.se muestran los tipos de mantenimiento a realizar de cada una de las máquinas y equipos.

SCIENTIA

Tabla 5.18.

Tipos de mantenimiento a la maquinaria y/o equipos

Maquina/Equipo	Actividad a realizar	Tipo de mantenimiento	Frecuencia
Torno paralelo	Limpieza y lubricación del sistema de transmisión, lubricación de la bancada, guías, tornillo sin fin, contrapunto, carro portaherramientas.	Preventivo	Anual
Torno vertical	Limpieza y lubricación del sistema de transmisión, lubricación de las guías, tornillo sin fin, contrapunto, brazo portaherramientas.	Preventivo	Anual
Mandrinadora	Limpieza y lubricación del sistema de transmisión, lubricación del cabezal vertical.	Preventivo	Anual
Fresadora	Limpieza y lubricación de caja de velocidad, lubricación de carro transversal, eje sin fin.	Preventivo	Anual
Taladro radial	Limpieza y lubricación del sistema de transmisión, revisión del cableado.	Preventivo	Anual
Amoladora	Limpieza, recambio de carbones.	Preventivo	Semestral
Prensa hidráulica	Lubricación y limpieza de gato hidráulico.	Preventivo	Semestral
Bomba hidráulica	Limpieza y lubricación	Preventivo	Semestral
Tecle	Inspección del trinquete de frenos, flecha de trinquete, resortes y discos de fricción.	Preventivo	Anual
Instalaciones sanitarias	Servicio de gasfitería	Preventivo	Anual
Camioneta	Servicio de mantenimiento según programa del fabricante	Preventivo	Cada 5000 Km.
Montacarga	Verificación del líquido hidráulico, el aceite del motor, el líquido de transmisión	Preventivo	Mensual
Equipos de computo	Servicios de software y hardware	Preventivo	Anual

5.9. Programa de producción

5.9.1 Consideraciones sobre la vida útil del proyecto

Se ha considerado 5 años como vida útil del proyecto a partir de la culminación de la instalación de la planta considerando los diversos factores como disponibilidad de recursos financieros, disponibilidad de materia prima, depreciación de la maquinaria entre otros. De acuerdo a la aceptación del mercado se considerara una ampliación o extensión de la vida útil del proyecto.

5.9.2 Programa de producción para la vida útil del proyecto

El programa de producción se fundamentará en el plan de ventas estudiado en el capítulo de Estudio de Mercado, basado en la venta de lo producido en el año. Igualmente el proyecto buscara minimizar el tiempo ocioso y obtener el mayor beneficio a la inversión fija. En la tabla 5.19.se muestra el programa de producción anual con una proyección de 5 años.

Tabla 5.19.

Programa de producción

Año	Demanda del proyecto	Capacidad instalada	Porcentaje de utilización de planta
ak.	Unidades		*
2015	46	56	82%
2016	47	56	84%
2017	47	_ 56	84%
2018	49	56	88%
2019	56	56	100%

5.10. Requerimiento de insumos, servicios y personal

5.10.1. Materia prima, insumos y otros materiales

Para la fabricación de bombas de vacío se necesitara del uso de materia prima, hierro fundido, eje de acero, rodamientos, etc. Para le requerimiento de materia prima, insumo y otros materiales se utilizara el diagrama de Gozinto durante 5años de vida útil del proyecto. En la tabla 5.20.se muestran el requerimiento de materia prima e insumos.

Tabla 5.20.

Requerimiento de materia prima e insumos (Unidad)

Descripción	2015	2016	2017	2018	2019
Hierro fundido A-48-41 clase 50550 kg	46	47	47	49	56
Hierro fundido nodular ASTM A-396. 451.4 Kg	46	47	47	49	56
Hierro fundido A-48-41 clase 5051 Kg	92	94	94	98	112
Hierro fundido A-48-41 clase 50356 Kg	92	94	94	98	112
Hierro fundido A-48-41 clase 5010 Kg	184	188	188	196	224
Hierro fundido A-48-41 clase 5045 Kg	92	94	94	98	112
Hierro fundido A-48-41 clase 505 Kg	92	94	94	98	112
Acero al carbono AISI 1045177 Kg	46	47	47	49	56
Rodamiento 22220 CC/WW33	92	94	94	98	112
Plancha de acero AISI 1045	92	94	94	98	112
Tuerca KM 20 (u)	46	47	47	49	56
Arandela MB20 (u)	46	47	47	49	56
Obturaciones de fieltro 4mmx4mmx460mm	184	188	188	196	224
Empaquetaduras de grafito 2mmx2mmx460mm	552	564	564	588	672
Pernos ½" UNC	1.564	1.598	1.598	1.666	1.904
Espárragos SAE 1020 5/8"UNC	1.196	1.222	1.222	1.274	1.456
Tapón macho 1/4" NPT	414	423	423	441	504
Válvula de seguridad de 1 ½"	138	141	141	147	168
Tuberías 2" x 1m.	46	47	47	49	56
Codos de 2"	184	188	188	196	224
Manómetro 0-200 psi-6"D	92	94	94	98	112

5.10.2. Servicios: Energía eléctrica, agua, lubricante, etc.

a) Energía eléctrica

El consumo de energía eléctrica en el proyecto está determinado principalmente por las operaciones de producción, operaciones administrativas e iluminación. La cantidad estimada de kW-h a consumir cada año está determinado por la potencia de cada máquina especificada en la tabla 5.21.así como la capacidad instalada y el plan de producción anual. En la tabla 5.22.se detallan los cálculos realizados.

Horas totales al año:

- %Utilización de planta x 8(horas/día) x 6(días/semana) x 52(semanas/año)
- Capacidad instalada: 56 bombas/año
- Ratio: Horas totales al año / Capacidad instalada

Tabla5.21.

Potencia en kW de las maquinas

				\wedge
Equipos	Especificación de HP	Numero de maquinas	HP total	kW total
Torno	5	2	10	7,46
horizontal				
Torno vertical	20	1	20	14,91
Mandrino	10	1	10	7,46
Fresadora	7,5	- JRAI	7,5	5,59
Taladro radial	10	FT YIV	10	7,46
Prensa	3	1	3	2,24
hidráulica				
Amoladora 7"	0,5	1	0,5	0,37
Tecle	10	1	10	7,46
Compresora	5	1	5	3,73
Total kW				56,68

Tabla 5.22. Consumo de energía eléctrica producción del año 2015 al 2019

Año	Producción anual (u/año)	Ratio (h/u)	Horas/Año	kW	kWh/año
2015	46	44,57	2.050,22	56,68	116.206,47
2016	47	44,57	2.094,79	56,68	118.732,70
2017	47	44,57	2.094,79	56,68	118.732,70
2018	49	44,57	2.183,93	56,68	123.785,15
2019	56	44,57	2.495,92	56,68	141.468,75

A continuación en la tabla 5.23.se presenta el total de energía eléctrica a consumir, para el caso del cálculo del consumo de energía para la administración se tomó de la página web del ministerio de Energía y Minas la aplicación para determinar el consumo mensual de energía.

Tabla 5.23.

Consumo de energía eléctrica anual (kWh/año)

Año	Maquinarias	Administración	Total consumo
2015	116.206,47	13.779,00	129.985,47
2016	118.732,70	13.779,00	132.511,70
2017	118.732,70	13.779,00	132.511,70
2018	123.785,15	13.779,00	137.564,15
2019	141.468,50	13.779,00	155.247,75

Agua

El consumo de agua está determinado por:

- Prueba de presión hidrostática
- Servicios higiénicos
- Limpieza de planta

Según la norma legal IS.010 de las instalaciones sanitarias la dotación de agua para el consumo humano en cualquier tipo de industria es de 80 litros por trabajador o empleado por día de 8 horas de trabajo y de 2 litros por día por m² para la limpieza de la planta.

En la siguiente tabla 5.24.se muestra el consumo anual de agua (m³/año) en la planta

Tabla 5.24.

Consumo anual de agua en la planta

Concepto	Consumo (m³/año)
Pruebas de presión hidrostática	62
Servicios higiénicos	350
Limpieza de planta	262
Consumo total	674

Elaboración propia

5.10.3. Determinación del número de operarios y trabajadores indirectos

La mano de obra directa (MOD) son los operarios que participan en el proceso de producción y agregan valor al producto. Para el cálculo del número de operarios y número de máquinas se tomó en cuenta la información de la tabla 5.9. Además se asociaron distintas funciones en base a la experiencia vista en proceso de fabricación de empresas nacionales como Fundición y Maestranza con la finalidad de determinar si un operario puede realizar más de una operación. La tabla 5.25.nos muestra el requerimiento de mano de obra directa.

Tabla 5.25.

Requerimiento de mano de obra directa

06 01
01
U1
01
01
09

En la tabla 5.26.se detalla el requerimiento de mano de obra indirecta

Tabla 5.26.

Requerimiento de mano de obra indirecta

Número de personas	
1	
1	
2	.)
	Número de personas 1 1 2

Elaboración propia

En la tabla 5.27.se muestra el personal administrativo requerido.

Tabla 5.27.

Requerimiento de personal administrativo

Cargo	Número de personas
Gerente General	1
Secretaria	1
Jefe de ventas	1
Vendedor	1
Total	4

5.10.4. Servicio de terceros

Se tercerizará los servicios contables. Se tercerizará los servicios de balanceo dinámico al rotor de la bomba de vacío, se tercerizará los servicios de limpieza, transporte y seguridad de planta. Para los servicios contables se contratara a un contador colegiado por horas en determinados días. Para el balanceo dinámico se contratara los servicios de "Electrónic Systems International S.A." expertos en análisis vibracional. Para la limpieza se contratara a la empresa "Corplimax SAC" especializada en el servicio de limpieza y mantenimiento industrial. En relación al transporte se trabajara con la empresa "Cuzcano SAC" cuya flota cubre todo el territorio nacional. Para el servicio de vigilancia se contratara a "Vigarza SAC" que se encargara del servicio de vigilancia las 24 horas.

5.11. Características físicas del proyecto

5.11.1. Factor edificio

El trazo y la nivelación del terreno es uno de los primeros puntos a cubrir antes de hacer alguna actividad de construcción. La planta en sus exteriores estará formado por muros de ladrillo, concreto y estructura de fierro. La construcción interior será de ladrillo y concreto para el área de producción y para las oficinas administrativas estarán compuestas de paneles de fibra block para el personal de mando medio y edificación convencional para los ejecutivos de mayor rango.

En lo que se refiere al piso de la planta y tomando en cuenta que además de usarse como superficie de trabajo se usara como una zona de tránsito la construcción de la loza debe tener un buen espesor, no resbaladizo y de fácil limpieza para lo cual se debe contar con un sistema de alcantarillado integrado para facilitar la limpieza. Las puertas, vías de circulación, ventanas, y demás detalles estarán construidas de acuerdo a las necesidades de la planta.

5.11.2. Factor servicio

El factor servicio comprende los siguientes puntos:

a) Servicio referente al personal:

Los primeros servicios a considerar son los servicios higiénicos allí se construirían inodoros, duchas, lavatorios, urinarios como muestra la tabla 5.28. además de instalar espejos, toalleros e implementarlos con papel sanitario, jabón líquido, secadores automáticos de aire y por ser una fábrica industrial se debe considerar vestuarios con lockers metálicos para que puedan guardar sus objetos personales.

Tabla 5.28.

Servicios higiénicos para el personal

Personas	Personas Inodoros Lavatorios		Duchas	Urinarios			
1-9	1	2	1	1			
10-24	2	4	2	2			
25-49	3	5	3	3			
50-80	4	6	4	4			

Fuente: Ministerio de Salud (2015)

Elaboración propia

Este proyecto requerirá de tres baños, dos para el área administrativa y uno para el área de producción y se tendrá la cantidad de servicios higiénicos como muestra la tabla 5.28.

Otro servicio a colocar es la iluminación para otorgar unas óptimas condiciones de trabajo y mejorar la calidad de vida del trabajador evitando la fatiga visual o perjudicar el sistema nervioso entre otros beneficios. Según la unidad derivada del Sistema Internacional de unidades para la iluminación "lux" la iluminación necesaria para las diferentes áreas de la industria de metalmecánica es de 200 a 300 lux para el área de mecanizado, 500 lux para oficinas como muestra la tabla 5.29.

Tabla5.29. Iluminación por área de trabajo

Emitancia luminosa (lux)	Áreas de trabajo		
50	Zona de tráfico, almacenes, etc		
100	Áreas de descanso		
200/300	Trabajos de mecanizado y de taller, cepillados etc.		
500	Oficinas		
750/1.000	Dibujo técnico, mecanizado de precisión		
h ang ai én muania			

En lo que se refiere al área que deben tener las oficinas estas estarán de acuerdo al cargo que desempeñen, en la tabla 5.30.se muestran estas áreas.

Tabla 5.30. Áreas de las oficinas administrativas

Cargo	Área (m²)
Gerencia general	20
Mando medio	10
Oficinistas	6
horación propia	-DAY'

Elaboración propia

Para el estacionamiento esta se ubicará en la parte frontal de la planta, con espacios divididos por una franja amarilla para la ubicación de los vehículos de los clientes.

b) Servicio referente al material:

Se debe destinar áreas en las que se pueda desarrollar todas las actividades referentes a los servicios que requiera los materiales. Este proyecto tendrá un área de calidad por lo cual es necesario contar con espacios adecuados para colocar los instrumentos y materiales de prueba especializadas para estos controles de calidad.

c) Servicio referente a la maquinaria

La evaluación del estado de las maquinas por parte del área de mantenimiento favorecen la continuidad de la producción. El encargado de esta área supervisa el correcto funcionamiento de la maquinaria. Por razones de costo y productividad los equipos deben operar sin interrupción por lo que utilizando el método preventivo se evitaran paros innecesarios de los equipos.

5.12. Disposición de planta

5.12.1. Determinación de las zonas físicas requeridas

Para este proyecto se requieren las siguientes zonas:

- Zonas de producción
- Zona de mantenimiento
- Zona de pruebas
- Zona de pinturas
- **❖** Almacén general
- Oficinas administrativas
- Zonas de seguridad
- Servicios higiénicos damas
- Servicios higiénicos caballeros
- Servicios higiénicos para el personal de planta
- Vestuarios
- Patio de maniobras.

5.12.2. Cálculo de áreas para cada zona

Zona de producción: Se utilizara el método de Guerchet para determinar la superficie requerida de las áreas de producción. En la tabla 5.33.se muestra el cálculo del área en forma detallada. Mientras que el cálculo para los almacenes es:

a) Almacén de materia prima e insumos

SCIENTIA

Requerimiento = 56 u/año x 1 año/12 meses = 4,67 unidades/mes

Considerando que por estrategia de compra van a realizar 3 pedidos al año:

Inventario = 4,67 u/mes x 4 meses = 19 unidades

A continuación, en la tabla 5.31.se detallan las cantidades de materia prima requeridas para 19 bombas de vacío que deberán mantenerse en stock con sus respectivas áreas de almacenamiento.

En el caso de estos componentes se almacenarán en el suelo, sostenidos por parihuelas o listones de madera de acuerdo a las medidas requeridas y apiladas uno encima de otro.

Tabla 5.31.

Cálculo de área de almacenamiento de componentes de hierro fundido

Materia prima	Largo (m)	Ancho m)	Cantidad de pallets	Niveles	Área (m²)
Hierro fundido A-48-41 clase 50 (casco)	0,85	0,85	10	2	7,23
Hierro fundido nodular ASTM A-396 (rodete)	0,64	0,64	10	2	4,10
Hierro fundido A-48-41 Clase 50 (cabezales)	0,92	0,80	10	4	7,36
Hierro fundido A-48-41 Clase 50 (conos)	0,39	0,39	19	2	2,89
Hierro fundido A-48-41 Clase 50 (tapas)	0,25	0,25	16	5	1,0
Hierro fundido A-48-41 Clase 50 (multiple)	1,25	0,26	19	2	6,18
Hierro fundido A-48-41 Clase 50 (collarin) Área	0,25	0,14	7	6	0,25 29,01

Las materias primas mostradas en la tabla 5.31. los materiales serán sostenidos y agrupados en 91 parihuelas en niveles del 1 hasta 6 según el tamaño y el peso.

Para el caso del almacenamiento de los ejes estos se colocarán en cantiléver de 2,0 m. de ancho por 2,46 m. de largo con tres niveles, y los rodamientos se agruparan en una parihuela de 1 m x 1,2 m uno sobre otro en 2 niveles.

Tabla 5.32.

Cálculo de materiales

Materiales	Largo (m)	Ancho (m)	Cantidad	Área (m²)
Eje	2,46	2	1	4,8
Rodamiento	1,2	1	1	1,2
		Área		6,0

Para los insumos como las empaquetaduras, pernos, tapones, etc. No tienen un tamaño significativo por lo que serán almacenados en un anaquel de 3 m de largo x 0,6 m de ancho x 2 m de altura, lo que da un área total 1,8 m².

Cálculo de ancho de pasadizos

Para calcular el ancho de los pasadizos de los almacenes tomara en cuenta el largo del montacargas incrementado en un 50% para darle un ángulo de giro que le permita tener el espacio necesario para el giro.

Ancho mínimo = 2.7 m largo x 1.5 m = 4.05 m. aproximadamente.

Se consideró por seguridad que el ancho de los pasadizos sea de 4,2 m.

Tabla 5.33.Cálculo de área total de almacenamiento de materia prima e insumos

Materia Prima e Insumos	Área de almacenamiento	Área Total (m²)
Almacenamiento de hierro fundido	29,01	43,52
Almacenamiento de materiales	6,0	9,0
Almacenamiento de insumos	1,8	2,7
Área total de almacén		55,22

Nota: El área total es el producto del área de almacenamiento por el factor de holgura (1,5) para movilizaciones.

b) Zona de almacenamiento de producto terminado

Como las bombas de vacío son un producto a pedido se reservará un área para 19 bombas de vacío ya que el producto se entregara cada cuatro meses se estima que el envío de la bomba de vacío estará entre 5 a 7 días por lo que se le asignara una zona donde se pueda colocar el producto hasta el despacho final. La zona tendrá un área de 26,03 m²

c) Zona Administrativa: Tomando los datos de la tabla 5.30 las áreas para las oficinas serán:

Oficina de Gerencia: 20 m²

Oficina de control de calidad: 10 m²

Oficina de ventas: 10 m²

Secretaria: 6 m²

Oficina de planta: Se considera dentro de la zona de mecanizado: 8 m²

El Área administrativa contara con un espacio mínimo de 46 m²

Comedor: El máximo número de trabajadores almorzando a la vez es de 15, tomando 1,47 m² por trabajador el área del comedor sería 22,1 m²

Servicios higiénicos: Oficinas tendrá un baño de 3,68 m² y los otros dos baños que se encuentran en el taller estará dividido por género y con vestuario con un área total de 20 m²

Zona de pintura: Una bomba de vacío ocupa un espacio de 1,24 m² y asumiendo que se podrían trabajar dos bombas a la vez el espacio mínimo requerido sería de 2,48 m²

Zona de pruebas: Para las pruebas hidrostáticas y de calidad se necesitara $20~\mathrm{m}^2$

Zona de mantenimiento: Para reparaciones o cambios de piezas será necesario 10 m² aproximadamente.

Para el patio de maniobras se necesita aproximadamente 35 m²

Tabla 5.34. Método de Guerchet

Elementos estáticos	n	N	largo	ancho	altura	Ss (l x a)	Sg (Ss x N)	Ss x n	Ss x n x h	Se	St
Bomba hidráulica	1	1	0,63	0,54	0,98	0,34	0,34	0,34	0,33	0,31	0,99
Torno paralelo	2	1	4,2	1,2	1,35	5,04	5,04	10,08	13,61	4,66	29,49
Torno vertical	1	1	3,5	4	4	14,00	14,00	14,00	56,00	12,95	40,95
Taladro Radial	1	1	1,43	0,82	2,06	1,16	1,16	1,16	2,39	1,07	3,40
Mandrino	A1	1	5,08	2,54	2,79	12,90	12,90	12,90	35,99	11,94	37,75
Fresadora	_1	1	2,30	1,77	2	4,06	4,06	4,06	8,12	3,76	11,88
Prensa hidráulica	1	1	1	1	4	1,00	1,00	1,00	4,00	0,93	2,93
Equipo de pintura	1	1	0,5	0,5	0,5	0,25	0,25	0,25	0,13	0,23	0,73
Mesas	6	1	2,5	1	0,9	2,50	2,50	15,00	13,50	2,31	43,88
			,	7		S	uma	58,80	134,08		172,00

Elementos móviles	n N	largo	ancho	altura	Ss (l x a)	Sg	Ss x n	Ss x n x h
Puente móvil de tecle	5	1,8	0,5	2,5	0,90	-	4,50	11,25
Montacarga	1 🕌	2,7	1,3	2,2	3,51	-	3,51	7,72
Operarios	9 -			1,65	0,50	-	4,50	7,43
						suma	12,51	26,40

hEM 2,11 hEE 2,28 K 0,46

Elaboración propia

Según la tabla 5.34.el área mínima requerida es 172m².

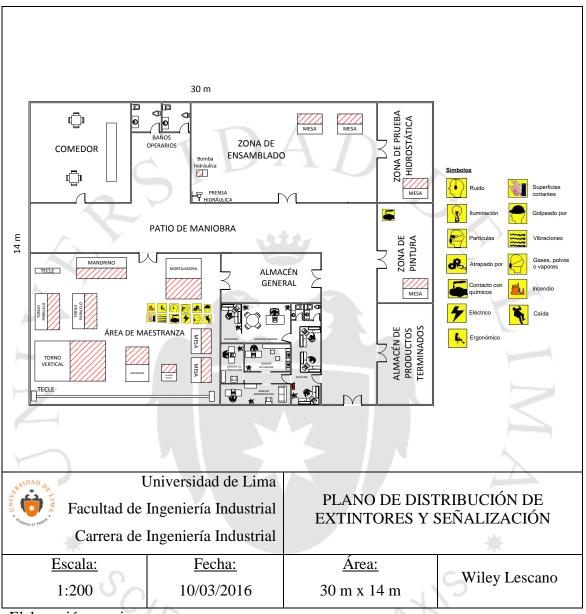
El Sr. Mitchell en su libro "Distribución de plantas industriales" a estimado valores de K que coinciden con el valor de K calculado debido al uso de la tecnología semiautomática para este tipo de proyectos

En la siguiente tabla se muestra el área requerida para cada ambiente de la planta.

Tabla 5.35. Áreas complementarias de la planta

Zona	Área (m²)
Administrativos	46
Almacén de materia prima e insumos	55,22
Almacén de producto terminado	26,03
Comedor	22,41
Zona de producción	180
Servicios higiénicos	23,68
Zona de pruebas hidrostáticas y calidad	20
Zona de mantenimiento	10
Zona de pintura	2,48
Zona de patio de maniobras	34
Área total requerida	420

Elaboración propia


5.12.3. Dispositivos de seguridad industrial y señalización

Es importante establecer el uso de equipos de protección personal (EPP) en las diferentes partes del proceso de fabricación. Según las normas de Defensa Civil se utilizaran señales que indiquen al trabajador del uso de los mismos. Se colocara señales de seguridad como carteles de advertencia (color amarillo), carteles de obligación (color azules) y señales de evacuación y emergencia de color verde.

El número total de extintores está dado por las superficies a proteger. Los extintores necesarios serán un extintor clase A para oficina, y para planta serán tres extintores de Clase B-PQS, O₂ para grasa y solventes y cinco extintores Clase C-PQS, CO₂ para equipos eléctricos.

Figura 5.7.

Distribución de extintores y señalización

5.12.4. Disposición general

La disposición de planta implica la ordenación física de los elementos industriales. Esta ordenación incluye, tanto los espacios necesarios para el movimiento del material, almacenamiento, trabajadores indirectos y todas las otras actividades o servicios, como el equipo de trabajo y el personal del taller.

• Para elaborar el análisis relacional se debe cumplir lo siguiente:

- Identificar las actividades con sus respectivos símbolos.
- Definir los códigos de proximidad a utilizar
- Definir una lista de motivos, la cual ayuda a establecer la decisión de colocar cerca o lejos las distintas zonas de la empresa.

En la tabla 5.36 se muestra la lista de motivos:

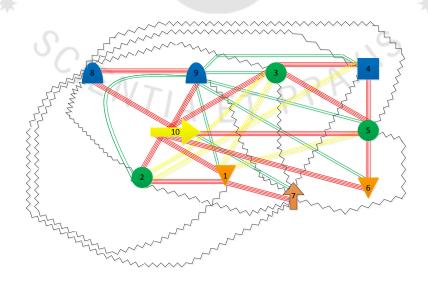
Tabla 5.36. Lista de motivos


Código	Motivo
1	Secuencia de proceso
2	Flujo de materiales y equipos
3	Recepción y despacho
4	Ruido y malos olores
5	Control
6	Por ser conveniente
7	Comunicación
8	No es necesario

Elaboración propia

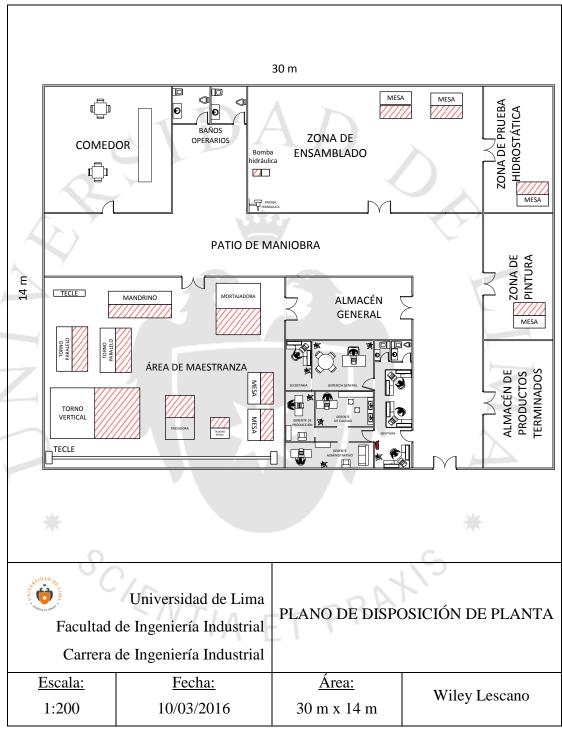
En la figura 5.8.se muestra la tabla relacional de actividades

SCIENTIA


Figura 5.8. Tabla relacional de actividades

- 1. Secuencia de proceso
- 2. Control
- 3. Olores y ruidos4. Necesidades personales
- 5. Comunicación
- 6. Mayor comunicación

En la figura 5.9 se muestra el diagrama relacional de actividades.


Figura 5.9. Diagrama relacional de actividades

5.12.5. Disposición de detalle

Figura 5.10.

Plano de disposición de planta

5.13. Cronograma de implementación del proyecto

A continuación se presenta en la tabla 5.37 el diagrama de Gantt para representar el cronograma de implementación del proyecto.

Tabla5.37.
Cronograma de implementación

Gantt		7	ri 3,201	6		Γri 4,201	6		ri 1,201	17		Tri 2,20	017
Actividades	Duración	Jul	Ago	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun
	(días)												
1.Diseño y evaluación del proyecto	90												
2.Constitución de la Empresa	30												
3. Ingeniería de proyecto	20												
4.Gestion financiera	30												
5. Construcción de infraestructura	90												
6.Reclutamiento de personal	15												
7. Inducción y capacitación del personal	15												
8. Instalación y montaje de equipos	120												
9. Prueba de equipos	30						C						
10.Inicio de operaciones	15					1	10						
Total	450	17.			DR	BI							

CAPITULO VI: ORGANIZACIÓN Y ADMINISTRACIÓN

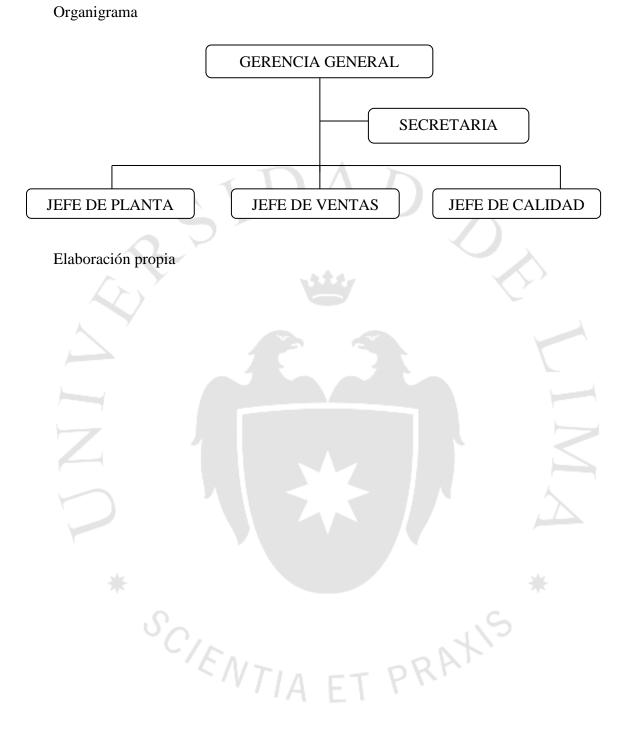
6.1. Organización empresarial

La organización empresarial implica una estructura de funciones cuyos miembros con un nivel educativo competitivo interactúan en la toma de decisiones para la solución de problemas inspirados en los principios, valores, reglas y procedimientos. Es con esta premisa que se propone la siguiente división de áreas en la empresa:

- Gerente General: Profesional de mayor jerarquía de la empresa, se constituye como representante legal de la empresa tiene como función organizar, dirigir, supervisar y ejecutar la gestión de la empresa. Garantiza el cumplimiento de las normas, reglamentos y políticas e instructivos internos y los establecidos por las entidades de regulación y control. Coordina con diferentes dependencias del gobierno y entidades empresariales.
 - Conduce el proceso de selección de personal, control del horario de entrada y salida, vela por su bienestar económico o social. Preparan el cuadro de requerimiento de necesidades de personal al igual que las comunicaciones de promociones y ascensos, contratación y despidos del personal.
- Secretaria: Lleva la agenda del día, organiza y velar por el correcto funcionamiento de la oficina, en cuanto a los servicios que en ella se brinden, especialmente en la organización de archivos, atención al público, transcripciones y dotación de papelería y útiles para la oficina y ejecutar las actividades que le correspondan para el cumplimiento de los procedimientos establecidos en la empresa.
- Jefe de Calidad: Depende jerárquicamente del Gerente. Gestiona el sistema de calidad y dirige su implantación y evaluación. Identifica y registra cualquier problema relacionados con la calidad y da soluciones. Da la conformidad o no conformidad al producto terminado, contacta con los clientes dándole la documentación, ensayos, etc. Para que pueda constatar que se cumplen con las especificación es técnicas requeridas y recomendadas por el cliente.

- Jefe de ventas: Planifica los objetivos y estrategias del equipo de ventas.. Controla y maximiza los catálogos o muestra del producto para promover su venta. Soluciona algunos reclamos de los clientes, solicita informes diarios sobre las visitas realizadas. Motiva a su equipo para que desarrolle el trabajo de la mejor manera posible.
- Jefe de Planta: Su responsabilidad es dirigir y supervisar el desarrollo de la producción para la obtención del producto con las especificaciones técnicas y de calidad propuestas para la comercialización así como lo vinculado al tema de mantenimiento. Es el responsable de lograr las metas de producción, formular el calendario de abastecimiento de insumos, maquinarias, equipos etc., en coordinación con los demás departamentos.

6.2. Requerimientos de personal directivo, administrativo y de servicios


En las Tablas 5.25.; 5.26.; 5.27.se encuentra el requerimiento del personal tanto los administrativos como los de producción.

Se tiene cuatro administrativos que son un gerente general, una secretaria, un jefe de ventas y un vendedor. Así mismo dos personas como mano de obra indirecta lo conforman un jefe de planta, un jefe de calidad y nueve operarios como mano de obra directa.

6.3. Estructura Organizacional

De acuerdo a los puestos detallados en la tabla 5.26. y 5.27. se determina la estructura organizacional por funciones, según figura 6.1.

Figura 6.1.

CAPITULO VII: ASPECTOS ECONÓMICOS Y FINANCIEROS

7.1. Inversiones

7.1.1. Estimación de las inversiones

La suma de los activos fijos tangibles, intangibles y capital de trabajo nos da lainversión total del proyecto.

Se considera un cambio referencial de 3,30 USD/PEN

SCIENTIA

a) Inversión fija tangible

Se considerará alquilar un local provisto de ambientes propios para el área de producción y lo que corresponda a las actividades administrativas; este deberá estar ubicado en el distrito de Lurín según la evaluación y selección de micro localización visto en el punto 3.3.2.

En la tabla 7.1.se muestran los costos de maquinarias y equipos necesarios para la producción de las bombas de vacío.

Tabla 7.1.

Inversión en maquinaria y equipos

Equipos	Precio (US\$)	Cantidad	Costo total (US \$)	Costo total (S/.)
Torno horizontal	16.000,00	2	32.000,00	
Torno vertical	35.000,00	1	35.000,00	
Mandrino	40.000,00	1	40.000,00	
Fresadora	10.000,00	A 1	10.000,00	
Taladro radial	11.000,00	A_1	11.000,00	
Prensa hidráulica	3.000,00	1	3.000,00	
Amoladora 7"	180,00	1	180,00	
Tecle	163,40	5	817,00	
Equipo de pintura	780,00	1	780,00	
Montacarga	13.000,00	1	13.000,00	
Bomba hidráulica	200,00	1	200,00	
Caja de herramientas	2.380,00	1	2.380,00	
		TOTAL	148.357,00	489.578,10

En la tabla 7.2.se muestra los costos de los equipos de oficina

Tabla 7.2.

Costos de equipos de oficina

Equipos de oficina	Precios (US\$)	Cantidad	Costo total (US\$)	Costo total (S/.)
Computadoras	515,00	6	3.090,00	
Impresora	213,00	2	426,00	
multifuncional				
Muebles y	348,50	6	2.091,00	
escritorios				
Útiles de oficina	71,42	6	428,52	
		TOTAL	6.035,52	19.917,22

Acondicionamiento del local: Hacer arreglos mínimos en el local para comenzar a funcionar costos que ascienden a \$ 10.000

Contingencias: Se considera para cualquier eventualidad futura 5% de la inversión fija tangible que asciende al monto de \$ 8.219,63.

En la tabla 7.3.se encuentra los montos totales de la inversión fija tangible.

Tabla 7.3.

Inversión fija tangible

Costo total (\$)	Costo total (S/.)			
148.357,00				
6.035,52				
10.000,00				
8.219,63				
172.612,15	569.620,10			
	148.357,00 6.035,52 10.000,00 8.219,63			

Elaboración propia

b) Inversión fija intangible

La inversión fija intangible comprende todos los gastos de la fase pre-operativa del proyecto comprende costos por estudios y proyectos, costos por organización, costos por asistencia técnica, entrenamiento, puesta en marcha y contingencias.

En la tabla 7.4.se muestra los montos de la inversión fija intangible

Tabla 7.4.

Inversión fija intangible

Inversión	Costo (US\$)	Costo (S/.)
Estudios y proyectos	1.300	
Organización	400	
Contingencias	400	
Total	2.100	6.930,00

Los costos por asistencia técnica, entrenamiento y puesta en marcha los asume el proveedor con el que adquirimos las maquinas.

7.1.2. Capital de trabajo

SCIENTIA

Es la cantidad de dinero necesario para la operación normal del proyecto durante un ciclo productivo.

En la tabla 7.5.resume la inversión estimada que el proyecto necesita para que la empresa funcione tomando un ciclo productivo de dos primeros meses.

Tabla 7.5. Capital de trabajo

Capital de trabajo	
Rubro	Costo (S/.) bimestral
Materia prima	105.942,99
Energía eléctrica	4.085,88
Agua	724,78
Alquiler de local	8.316,00
Mano de obra	76.756,96
Personal Administrativo	56.333,33
Transporte	1200,00
Servicio de terceros	11.520,00
Mantenimiento	6.000,00
Producción	3.000,00
Publicidad y marketing	2.540,00
Útiles de oficina	860,00
Capital de trabajo (S/.)	267.279,94
Capital de trabajo (\$)	80.993,92

La inversión de capital de trabajo necesaria para financiar el proyecto es S/ 267.279,94 con los cálculos obtenidos de la inversión fija y el capital de trabajo, en la tabla 7.6. se determina la inversión total del proyecto.

SCIENTIA

T PRAXIS

Tabla 7.6.

Inversión total del proyecto

Inversión del proyecto	Costos (S/.)
Inversión fija tangible	569.620,10
Inversión fija intangible	6.930,00
Inversión de capital de trabajo	267.279,94
Total (S/.)	843.830,04
Total (\$)	255.706,07

7.2. Costos de producción

7.2.1. Costos de materias primas, insumos y otros materiales

SCIENTI

En la tabla 7.7.se muestra el costo de la materia prima e insumos en peso cuando de fierro fundido y acero se trata y el precio por unidad de los otros insumos tomados de la tabla 5.18.requerimiento de materia prima e insumo del capítulo V para la vida útil del proyecto.

Tabla 7.7. Costo de Materia prima e insumo

Descripción	Costo (\$/kg)	2015	2016	2017	2018	2019
Hierro fundido A-48-41 clase 50 (550 kg)	1,80	45.540,00	46.530,00	46.530,00	48.510,00	55.440,00
Hierro fundido nodular ASTM A-396. (452 Kg)	1,80	37.425,60	38.239,20	38.239,20	39.866,40	45.561,60
Hierro fundido A-48-41 clase 50 (102 Kg)	1,80	8.445,60	8.629,20	8.629,20	8.996,40	10.281,60
Hierro fundido A-48-41 clase 50 (712 Kg)	1,80	58.953,60	60.235,20	60.235,20	62.798, 40	71.769,60
Hierro fundido A-48-41 clase 50 (40 Kg)	1,80	3.312,00	3.384,00	3.384,00	3.528,00	4.032,00
Hierro fundido A-48-41 clase 50 (90 Kg)	1,80	7.452,00	7.614,00	7.614,00	7.938,00	9.072,00
Hierro fundido A-48-41 clase 50 (10 Kg)	1,80	828,00	846,00	846,00	882,00	1.008,00
Acero al carbono AISI 1045	1,57	9.027,50	9.223,75	9.223,75	9.616,25	10.990,00
(125 Kg)						
Rodamiento 22220 CC/WW33 (u)	160.08	14.727,36	15.047,52	15.047,52	15.687,84	17.928,96
Plancha de acero AISI 1045	0,10	9,20	9,40	9,40	9,80	11,20
Tuerca KM 20 (u)	14,75	678,50	693,25	693,25	722,75	826,00
Arandela MB20 (u)	2,21	101,66	103,87	103,87	108,29	123,76
Obturaciones de fieltro 4mmx4mmx460mm (u)	0,80	147,20	150,40	150,40	156,80	179,20
Empaquetaduras de grafito 2mmx2mmx460mm (u)	0,25	138,00	141,00	141,00	147,00	168,00
Pernos ½" UNC (u)	0,15	234,60	239,70	239,70	249,90	285,60
Espárragos SAE 1020 5/8"UNC (u)	0,06	71,76	73,32	73,32	76,44	87,36
Tapón macho 1/4" NPT (u)	0,65	269,10	274,95	274,95	286,65	327,60
Válvula de seguridad de 1½"(u)	29,03	4.006,14	4.093,23	4.093,23	4.267,41	4.877,04
Tuberías 2" x 1 m. (u)	1,84	84,64	86,48	86,48	90,16	103,04
Codos de 2" (u)	0,19	34,96	35,72	35,72	37,24	42,56
Manómetro 0-200 psi-6"D (u)	12,35	1.136,20	1.160,90	1.160,90	1.210,30	1.383,20
Costo total (\$)		192.623,62	196.811,09	196.811,09	205.186,03	234.498,32
Costo total (S/.)		635.657,95	649.476,60	649.476,60	677.113,90	773.844,46

7.2.2. Costos de los servicios

Los costos de servicio incluyen, costos de agua, energía, costo de telefonía e internet, costo de mantenimiento de la maquinaria, y otros servicios.

El costo de energía eléctrica

Costo de consumo de agua

Se calculará con el consumo energético mostrado en el cuadro 5.22 multiplicado por la tarifa vigente; agregando el cargo fijo, alumbrado público entre otros. Los datos técnicos a considerar son una tarifa MT3, conexión subterránea y un medidor trifásico. En la tabla 7.8.se muestra un pliego tarifario que se aplicara para estas características.

Tabla 7.8.

Pliego tarifario para la venta de energía eléctrica

Medición doble de energía y una potencia contratada (2E1P)	Unidad	Media tensión	Baja tensión
		MT3	ВТ3
Cargo Fijo mensual	S/. / Usuario	3,40	3,40
Cargo por Energía en punta	Cent.S/./ kWh	18,86	20,64
Cargo por Energía fuera de punta	Cent.S/./ kWh	16,18	17,71
Cargo por potencia activa de generación para calificación "Presentes punta"	S/. / Kwmes	26,27	26,38
Cargo por potencia activa de generación para calificación "Fuera punta"	S/. / kWmes	16,17	17,71
Cargo por potencia activa por uso redes de distribución para calificación "Presentes punta"	S/. / kWmes	11,99	51,77
Cargo por potencia activa por uso redes de distribución para calificación "Fuera punta"	S/. / kWmes	12,27	48,34
Cargo por energía reactiva que exceda del 30% del total de la energía activa	Cent.S/./kWh	3,79	3,79

Fuente: Luz del Sur S.A.A. (2015)

Tabla **7.**9.

Costos de energía eléctrica

Año	Energía utilizada (kWh/año	Costo unitario (S/.kWh)	Costo total (S/.)
2015	129.985,47	0,1886	24.515,26
2016	132.511,70	0,1886	24.991,71
2017	132.511,70	0,1886	24.991,71
2018	137.564,15	0,1886	25.944,60
2019	155.247,75	0,1886	29.279,73

Para calcular el costo anual del consumo de agua se utilizó la estructura tarifaria de la tabla 7.10.con el consumo de agua calculado en el cuadro 5.23.

Tabla 7.10.

Estructura tarifaria para la venta de agua

Tarifa	Rango (m ³)	Agua (S/. /m³)	Alcantarillado (S/./m³)
Industrial	O a 1.000	4,490	1,962
	1.000 a mas	4,817	2,104

Fuente: Sedapal (2015)

El consumo anual de agua es de 674 m³/año por lo que el costo total anual por el consumo de agua y alcantarillado es de S/. 4.348,65

Costo de telefonía móvil e internet

Según las tarifas actuales de Telefónica del Perú se calcula un promedio de S/. 4.000,00 anuales por ambos conceptos.

7.2.3. Costo de la mano de obra

Para el cálculo de la mano de obra directa e indirecta se tomara en cuenta once sueldos más un sueldo por vacaciones, gratificaciones, seguro de EsSalud, y CTS.

a) Mano de obra directa

Tabla 7.11.

Cálculo de los sueldos anuales de la MOD

Operario	Sueldo mensual (S/.)	Seguro mensual (S/.)	CTS anual (S/.)	Gratificación anual (S/.)	Sueldo anual (S/.)
Tornero 1	3.000	270	3.510	6.000	48.750,00
Tornero 2	3.000	270	3.510	6.000	48.750,00
Tornero 3	3.000	270	3.510	6.000	48.750,00
Mandrinador	3.000	270	3.510	6.000	48.750,00
Fresador	2.500	225	2.925	5.000	40.625,00
Taladrador	1500	135	1.755	3.000	24.375,00
Montaje	2.500	225	2.925	5.000	40.625,00
Pintor	1.000	90	1.170	2.000	16.250,00
Ayudante	900	81	94,77	1.800	13.666,77
Ŧ	7	1		Total	330.541,77

T PRAXIS

Elaboración propia

SCIENTIA

b) Mano de obra indirecta

Tabla 7.12.

Cálculo de los sueldos de la MOI

Personal	Sueldo mensual (S/.)	Seguro mensual (S/.)	CTS anual (S/.)	Gratificación anual (S/.)	Sueldo anual (S/.)
Jefe de planta	4.500	405	5.265	9.000	73.125
Jefe de calidad	3.500	315	4.095	7.000	56.875
	0	DI	$I \cup I$	Total	130.000

Elaboración propia

Tabla 7.13.

Cálculo de los sueldos administrativos

Personal	Sueldo mensual (S/.)	Seguro mensual (S/.	CTS ANUAL (S/.)	Gratificación Anual (S/.)	Sueldo Anual (S/.)
Gerente general	10.000	900	11.700	20.000	162.500
Asistente de gerencia	2.000	180	2.340	4.000	32.500
Jefe de ventas	5.000	450	5.850	10.000	81.250
Vendedor	3.800	342	4.446	7.600	61.750
*				Total	338.000

Elaboración propia

7.3. Presupuesto de ingresos y egresos

7.3.1. Presupuesto de ingreso por ventas

El presupuesto de ingreso por ventas será calculado a partir de la demanda del proyecto, el precio a considerar es de \$ 14.000por debajo del precio que oferta Fundición y Maestranza. La tabla 7.14.muestra el presupuesto de ingreso por ventas considerando un precio unitario constante.

Tabla 7.14.

Presupuesto de ingresos por ventas

Año	Demanda	Precio unitario (\$)	Precio unitario (S/.)	Ingreso por ventas (S/.)
2015	46	14.000,00	46.200,00	2.125.200,00
2016	47	14.000,00	46.200,00	2.171.400,00
2017	47	14.000,00	46.200,00	2.171.400,00
2018	49	14.000,00	46.200,00	2.263.800,00
2019	56	14.000,00	46.200,00	2.587.200,00

7.3.2. Presupuesto operativo de costos

La tabla 7.15.se muestra el cálculo de la depreciación de cada año útil del proyecto

Tabla 7.15.

Presupuesto de depreciación

Descripción	Valor (S/.)	Tiempo de vida (años)	Depreciación Anual
Maquinaria y equipo	489.578,10	5	97.915,62
Acondicionamiento del local	33.000,00	5	6.600,00
Activos intangibles	6.930,00	5	1.386,00
Total	529.508,10	FT PN,	105.901,62
Depreciación anual			104.515,62
Amortización anual			1.386,00

Elaboración propia

La tabla 7.16.nos muestra el presupuesto operativo de costos durante la vida útil del proyecto.

Tabla 7.16.

Presupuesto operativo de costos (S/.)

	2015	2016	2017	2018	2019
Costo MP	335.657,95	649.476,60	649.476,60	677.113,90	773.844,46
Costo MOD	330.541,77	330.541,77	330.541,77	330.541,77	330.541,77
Costo MOI	130.000,00	130.000,00	130.000,00	130.000,00	130.000,00
Costo energía eléctrica	24.515,26	24.991,71	24.991,71	25.944,60	29.279,73
Costo agua	4.348,65	4.348,65	4.348,65	4.348,65	4.348,65
Alquiler de local	49.896,00	49.896,00	49.896,00	49.896,00	49.896,00
Costo de transporte	7.200,00	7.200,00	7.200,00	7.200,00	7.200,00
Depreciación tangibles	104.515,62	104.515,62	104.515,62	104.515,62	104.515,62

7.3.3. Presupuesto operativo de gastos administrativos

En la tabla 7.17.se muestra el presupuesto operativo de gastos administrativos del 2015 - 2019

Tabla 7.17.

Presupuesto de gastos operativos (S/.)

So	2015	2016	2017	2018	2019
Sueldo administrativos	338.000	338.000	338.000	338.000	338.000
Servicios de terceros	69.120	69.120	69.120	69.120	69.120
Mantenimiento*	36.000	36.000	36.000	36.000	36.000
Producción**	18.000	18.000	18.000	18.000	18.000
Publicidad	15.240	15.240	15.240	15.240	15.240
Útiles de escritorio	5.160	5.160	5.160	5.160	5.160
Amortización intangibles	1.386	1.386	1.386	1.386	1.386

Nota: Mantenimiento: Consumo de aceites para lubricación, rodamientos, bocinas, engranajes. Producción: Refrigerantes, discos de corte, piedra esmeril, lijas, limas, combustible para el montacargas.

7.4. Flujo de fondos netos

En la tabla 7.18.se muestra el estado de resultados sin considerar el financiamiento

Tabla 7.18.

Estado de resultados sin considerar financiamiento (S/.)

	2015	2016	2017	2018	2019
Ventas (UN)	46	47	47	49	56
Precio (S/./UN)	46200.00	46.200,00	46.200,00	46.200,00	46.200,00
Ingreso por ventas	2.125.200,00	2.171.400,00	2.171.400,00	2.263.800,00	2.587.200,00
Costo MP	635.657,95	649.476,60	649.476,60	677.113,90	773.844,46
Costo MOD	330.541,77	330.541,77	330.541,77	330.541,77	330.541,77
Costo MOI	130.000,00	130.000,00	130.000,00	130.000,00	130.000,00
Costo energía eléctrica	24.515,26	24.991,71	24.991,71	25.944,60	29.279,73
Costo agua	4.348,65	4.348,65	4.348,65	4.348,65	4.348,65
Alquiler de local	49.896,00	49.896,00	49.896,00	49.896,00	49.896,00
Costo de transporte	7.200,00	7.200,00	7.200,00	7.200,00	7.200,00
Depreciación tangible	104.515,62	104.515,62	104.515,62	104.515,62	104.515,62
Costo de ventas	1.286.675,25	1.300.970,35	1.300.970,35	1.329.560,54	1.429.626.23
Utilidad operativa	838.524,75	870.429,65	870.429,65	934.239,46	1.157.573,77
Sueldos	338.000,00	338.000,00	338.000,00	338.000,00	338.000,00
administrativos					
Servicios de terceros	69.120,00	69.120,00	69.120,00	69.120,00	69.120,00
Mantenimiento*	36.000,00	36.000,00	36.000,00	36.000,00	36.000,00
Producción**	18.000,00	18.000,00	18.000,00	18.000,00	18.000,00
Publicidad	15.240,00	15.240,00	15.240,00	15.240,00	15.240,00
Útiles de escritorio	5.160,00	5.160,00	5.160,00	5.160,00	5.160,00
Amortización	1.386,00	1.386,00	1.386,00	1.386,00	1.386,00
intangibles				1/2	
Total Gastos	482.906,00	482.906,00	482.906,00	482.906,00	482.906,00
Utilidad antes de	355.618,75	387.523,65	387.523,65	451.333,46	674.667,77
impuestos	' /	AEI	1 .		
Impuesto a la renta	106.685,63	116.257,10	116.257,10	135.400,04	202.400,33
(30%)					
Utilidad neta antes de	248.933,12	271.266,55	271.266,55	315.933,42	472.267,44
RL					

7.4.1. Flujo de fondos económicos

La tabla 7.19.muestra el flujo de fondos económicos, se considera que el accionista aporta el total de la inversión. La inversión total del proyecto en el año cero es S/. 843.830,04

Tabla 7.19.

Flujo de fondos económicos (S/.)

	2015	2016	2017	2018	2019
Utilidad neta	248.933,12	271.266,55	271.266,55	315.933,42	472.267,44
Dep. Tangible	104.515,62	104.515,62	104.515,62	104.515,62	104.515,62
Amort. Intang	1.386,00	1.386,00	1.386,00	1.386,00	1.386,00
FF.Económico	354.834,74	377.168,17	377.168,17	421.835,04	578.169,06

Elaboración propia

7.4.2. Flujo de fondo financiero

Para el cálculo de los flujos financieros se considera que el accionista quienes esperan un rendimiento del proyecto (COK) del 18% aportara el 40% de la inversión y el 60% lo asumirá una entidad financiera como muestra la tabla 7.20.

Tabla 7.20.

Fuente de financiamiento

Concepto	Participación	Monto (S/.)
Capital propio	40%	337.532,02
Préstamo	60%	506.298,02
Total	100%	843.830,04

El cálculo del CPPC se muestra en la tabla 7.21

Tabla 7.21.

Repartición de la Inversión (S/.)

	Importe (S/.)	% participación	Tasa	СРРС
Capital propio	337.532,02	40%	18%	7,20
Financiamiento	506.298,02	60%	16,35%	9,81
			CPPC	17,01

Elaboración propia

COFIDE mediante el programa multisectorial de inversión-PROPEM otorgará un financiamiento del 60% del costo total de la inversión y el 40% restante por los socios del proyecto. El Banco de Crédito del Perú será la institución financiera intermedia. Ver en la tabla 7.22.

Tabla 7.22.

Condiciones del préstamo

Concepto	Tasa
Recargo COFIDE	6,10%
Comisiones	1,75%
Recargo BCP	8,50%
Total TEA	16,35%

Fuente: COFIDE y Banco de Crédito del Perú (2015)

El préstamo se solicitará en el año 0 (año de inversión) pagaderos en cuotas anuales constantes durante los 5 años de duración del proyecto sin periodo de gracia como se muestra en la tabla 7.23.

Tabla 7.23.

Cronograma de pagos (S/.)

	-	Años	1		
	2015	2016	2017	2018	2019
Deuda	506.298,02	433.185,24	348.118,52	249.143,39	133.985,82
Interés	82.779,73	70.825,79	56.917,38	40.734,94	21.906,68
Amortización	73.112,78	85.066,72	98.975,13	115.157,57	133.985,82
Cuota	155.892,51	155.892,51	155.892,51	155.892,51	155.892,51

Elaboración propia

Finalmente en la tabla 7.24.se muestra el flujo de fondos financieros.

Tabla 7.24.
Flujo de fondos financieros (S/.)

Años

	2015	2016	2017	2018	2019
FF. Económico	354.834,74	377.168,17	377.168,17	421.835,04	578.169,06
Interés	82.779,73	70.825,79	56.917,38	40.734,94	21.906,68
Amort. Deuda	73.112,78	85.066,72	98.975,13	115.157,57	133.985,82
FF. Financiero	198.942,23	221.275,66	221.275,66	265.942,53	422.276,56

CAPITULO VIII: EVALUACIÓN ECONÓMICA Y FINANCIERA DEL PROYECTO

8.1. Evaluación económica: VAN, TIR, B/C, PR

En la evaluación económica se considera que los accionistas aportan el 100% utilizando el costo de oportunidad del accionista (COK) visto en el capítulo VII se obtiene los siguientes resultados:

Tabla 8.1.
Indicadores económicos

VANE	S/. 427.610,71	
TIRE	37,15%	
B/C	1,51	
PR	1,81	

Elaboración propia

8.2. Evaluación financiera: VANF, TIRF, B/C, PR

El mismo análisis que en el punto anterior se realiza para el Fondo de flujo financiero, en este caso se considera la deuda.

Tabla 8.2.
Indicadores financieros

VANF	S/. 446.406,20
TIRF	61,61%
B/C	2,32
PR	1,33

8.3. Análisis de los resultados económicos y financieros del proyecto

Análisis de resultados:

- 1. El valor actual neto (VAN) económico y financiero es mayor a 0 el proyecto se considera económica y financieramente viable.
- 2. Al ser la TIRE mayor que el COK y el TIRF mayor que el CPPC el retorno de la inversión es positiva.
- 3. La relación beneficio costo (B/C) nos indica que por cada sol invertido habrá utilidad y en ambos casos son mayor que 1.
- 4. El periodo de recupero (PR) indica el tiempo en el cual se recupera la inversión en este caso desde el punto económico se recupera en 1,81 año (1 año, 9 meses y 22 días). Con el enfoque financiero si se accede a un préstamo del 60% del total de la inversión se recuperaría en 1,33 años (1 año, 3 meses y 29 días).

8.4. Análisis de sensibilidad del proyecto

El análisis de sensibilidad del proyecto nos permite determinar cómo se puede ver vulnerada la rentabilidad del proyecto debido a modificaciones en diferentes variables.

Para el caso del proyecto tomaremos como principales variables el precio del producto, el precio de la materia prima y la cantidad vendida en una variación de +/- 5 % variación que se podría realizar en caso la competencia lo demande. Estas variaciones están analizadas con la evaluación financiera del proyecto.

Tabla 8.3.

Variación en el precio de las bombas de vacío

	6 /1/	つしい	
Escenarios	-5%	0	+5%
VANF	S/. 202.085,35	S/. 446.406,20	S/. 690.727,06
TIRF	38%	61,61%	84%
B/C	1,60	2,32	3,05
PR (años)	1,94	1,33	1,04

Tabla 8.4.

Variación en el precio de la materia prima

Escenarios	-5%	0	+5%
VANF	S/. 519.483,80	S/. 446.406,20	S/. 373.328,62
TIRF	68%	61,61%	55%
B/C	2,54	2,32	2,11
PR (años)	1,23	1,33	1,47

Elaboración propia

Tabla 8.5.

Variación en la cantidad vendida

Escenarios	-5%	0	+5%
VANF	S/. 211.209,20	S/. 446.406,20	S/. 662.807,75
TIRF	28%	61,61%	81%
B/C	1,25	2,32	2,96
PR (años)	1,82	1,33	1,07

Elaboración propia

En el análisis de sensibilidad se puede observar que la variable de mayor sensibilidad se enfoca en el precio del producto y en la cantidad vendida. En cuanto a la variación de los precios de la materia prima puede ser asimilada por los ingresos del proyecto.

CIENTIA

CAPITULO IX: EVALUACIÓN SOCIAL DEL PROYECTO

9.1. Identificación de las zonas y comunidades de influencia del proyecto

Según la evaluación y selección de micro localización del capítulo III se concluyó que la planta se ubicara en el distrito de Lurín. Este distrito se encuentra localizado dentro de la provincia y departamento de Lima en la zona sur del mismo. Las tendencias para el crecimiento de la población en el ámbito urbano son positivas y el interés de los industriales por instalarse en los terrenos industriales de Lurín que cuentan con 67.790.000 m² que lo hacen atractivo. Sobre todo, en el área de metal-mecánica.

9.2. Impacto en la zona de influencia del proyecto

En la zona de influencia de proyecto uno de los mayores impactos es ser partícipe del sustento para la generación de empleo local y promover el desarrollo profesional de sus habitantes. Otro punto a tomar en cuenta es el movimiento comercial en los alrededores que generará la puesta en marcha del proyecto, y que favorecerá evidentemente a todas las tiendas comerciales colindantes.

9.3. Impacto social del proyecto

El distrito de Lurín tiene actualmente una población de 82.319 habitantes de los cuales 39.595 pertenecen a la PEA ocupada y dentro de los cuales solo el 14,9 % labora en empresas manufactureras es decir 5.900 personas que equivale al 7% de la población total del distrito. A consecuencia de esto, se considera como uno de los impactos positivos del proyecto el contribuir a la generación de empleo al contratar los servicios de estas personas.

Así mismo, se presentará el cálculo de algunos factores para cuantificar el crecimiento económico desde la perspectiva social. La tabla 9.1. nos muestra el cálculo del valor agregado el cual mide el impacto social del proyecto, dando como resultado un valor final S/. 4.680.998,22 generados a partir de la operación del proyecto.

Tabla 9.1.

Valor agregado del proyecto (S/.)

	2015	2016	2017	2018	2019
Utilidad antes de impuestos	355.618,75	387.523,65	387.523,65	451.333,46	674.667,77
Sueldos y salarios	798.541,77	798.541,77	798.541,77	798.541,77	798.541,77
Gastos financieros	82.779,73	70.825,79	56.917,38	40.734,94	21.906,68
Servicios	69.120,00	69.120,00	69.120,00	69.120,00	69.120.00
Depreciación	104.515,62	104.515,62	104.515,62	104.515,62	104.515,62
Amortización	1.386,00	1.386,00	1.386,00	1.386,00	1.386,00
Valor agregado	1.411.961,87	1.431.912,83	1.418.004,42	1.465.631,79	1.670.137,84
Valor agregado					
actual	1.206.701,88	1.045.852,94	885.133,23	781.867,14	761.443,04
Valor agregado acumulado					4.680.998,22

Elaboración propia

En las siguientes tablas 9.2., 9.3.y 9.4.se presentan los siguientes indicadores:

Tabla 9.2.

Relación Producto Capital

Valor agregado	S/. 4.680.998,22	
Inversión total	S/. 843.830,04	
P/C	5,54veces	

Elaboración propia

La relación Producto Capital del proyecto indica que la inversión es mayor que 1, por lo tanto el proyecto es socialmente viable. Por cada sol invertido en el proyecto se gana aproximadamente 5.

Tabla 9.3.

Densidad de Capital

Inversión total	S/. 843.830,04	
Número de trabajadores	15	
Inversión / N° de trabajadores	S/. 56.255,34	

Elaboración propia

El indicador Densidad de Capital determina que para generar un puesto de trabajo se debe invertir S/. 56.255,34

Tabla 9.4.
Intensidad de Capital

Inversión total	Y	S/. 843.830,04	
Valor agregado		S/. 4.680.998,22	
I.C		0,18	
ón muonio			

Elaboración propia

La relación I.C indica que para generar un sol de valor agregado se requiere de S/. 0,18 de inversión.

CONCLUSIONES

- De acuerdo a la proyección de la demanda interna aparente y las encuestas a nuestro público objetivo, el mercado en capacidad de atender será el sector minero, el gran aparato logístico que manejan nos permiten asegurar la venta de la producción y planificar las ventas, pero sin dejar de captar clientes en el sector papelero y pesquero cuya demanda también crece a través de los años.
- Los indicadores económicos y financieros concluyen que este es un proyecto viable ya que presentan un VAN y un TIR favorable.
- El análisis de macro localización, concluyo que la mejor ubicación se encontraba en el distrito de Lurín porque presentaba variables muy importantes como las vías de acceso a las principales carreteras, proximidad de la materia prima, cercanía al mercado, disponibilidad de energía eléctrica, agua potable y disponibilidad de mano de obra.
- La organización tiene una estructura funcional cuyo personal está conformado por 15 personas entre operarios y administrativos.
- En la selección de tamaño de planta de acuerdo a los resultados obtenidos a partir de los factores analizados determino que el tamaño de planta va a estar determinado por la relación tamaño-mercado es decir 56 bombas de vacío al año.
- El proceso de producción no genera impactos ambientales críticos solo se producen impactos mínimos, controlables con medidas de ingeniería simple para aminorar los efectos contaminantes.
- En la evaluación social del proyecto, se observó que le proyecto cuenta con buenos indicadores que aumentan las oportunidades laborales.

RECOMENDACIONES

- Los indicadores que se muestran en la rentabilidad financiera del proyecto lo hacen muy atractivo para el inversionista por lo que se recomienda ejecutarse previa elaboración de un estudio de factibilidad y de un estudio definitivo que aseguren una buena implementación.
- Se debe hacer un Estudio de Impacto Ambiental (EIA) para demostrar que las operaciones no originan riesgo alguno a la sociedad y al medio ambiente.
- Tomar atención a nuevas tecnologías que ofrece el mercado que pueden ser beneficiosas para los costos, la calidad del producto y el medio ambiente.
- Realizar un estudio ergonómico que asegure al trabajador comodidad y seguridad en la realización de sus labores.
- Analizar la posibilidad de realizar otros servicios puesto que la tecnología utilizada en las bombas de vacío da la oportunidad de generar nuevos ingresos económicos.

SCIENTIA

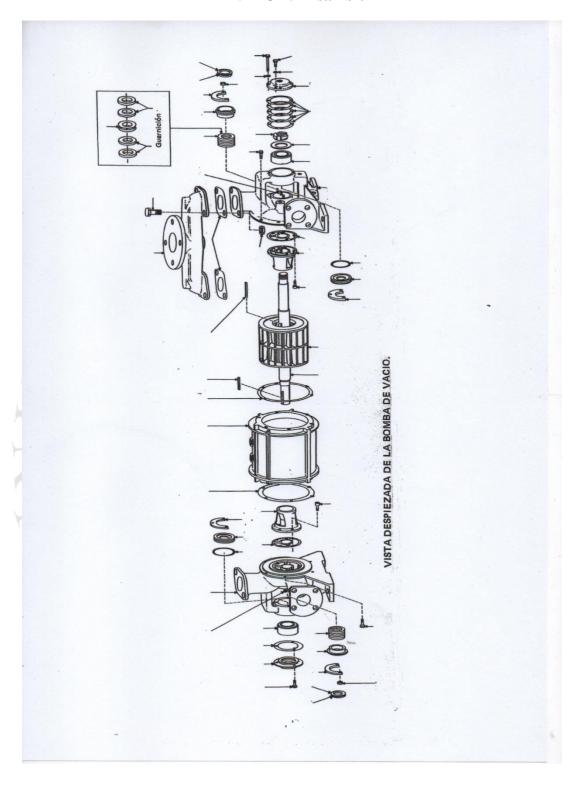
REFERENCIAS

- Aceros especiales Bohler. *Manual de Aceros*. Recuperado de: http://www.bohlerperu.com/
- Código Asme. *Recipientes a presión*. Recuperado de: https://www.asme.org/shop/standards/new-releases/boiler-pressure-vessel-code/
- Compañía LV Investment. S.A.C. *Mercado Inmobiliario*. Recuperado de: http://www.deperu.com/comercios/arquitectura-inmobiliarias-e-ingenieria-de-la-construccion/lv-investment-sac-1141578
- Distance Calculator. Distancia entre distritos. Recuperado de: http://www.himmera.com
- Fundición y Maestranza Industrial S.R.L. *Estadísticas e información*. Recuperado de: www.fmiperu.com
- INEI. *Dirección nacional de cuentas nacionales*. Recuperado de: https://www.inei.gob.pe/media/MenuRecursivo/metodologias/pbi01.pdf
- Instituto Metropolitano de Planificación. *Identificación de zonas*. Recuperado de: http://www.imp.gob.pe/
- Instituto Nacional de Estadística e Informática. *Población y Vivienda*. Recuperado de: https://www.inei.gob.pe/estadisticas/indice-tematico/poblacion-y-vivienda/
- Mepsa. Especificaciones técnicas. Recuperado de: http://www.mepsa.com/productos.html
- Ministerio de Energía y Minas. *Cartera estimada de proyectos mineros*. Recuperado de: http://www.minem.gob.pe/minem/archivos/file/Mineria/INVERSION/2016/CEP% 2003 -2016.pdf
- Ministerio de Trabajo y Promoción del Empleo. *Convenio MTPE-Propoli*. Recuperado de: http://www.mintra.gob.pe/archivos/file/estadisticas/peel/estadisticas/InformeEstadistico Anillado.pdf
- NASH Engineering Company. *Installation and Operation*. Recuperado de http://www.ippe.com/Photos/205/205965_Nash%20Operation%20&%20Maintenance%20Manual.pdf
- Orellana, A. Superintendente de mantenimiento, Shougang Hierro Perú S.A.A. [Fecha de la entrevista: 18 de agosto del 2015].
- Osinergmin. *Tarifa consumo de energía eléctrica*. Recuperado de: http://www2.osinerg.gob.pe/Tarifas/Electricidad/PliegosTarifariosUsuarioFinal.aspx?Id =150000
- Proyecto Ecometal. *Cuaderno de impactos ambientales y buenas prácticas en el puesto de trabajo*. Recuperado de: http://ecometal.aimme.es/observatorio/guias/docs/guiamecanizado.pdf

- SEDAPAL. *Ejemplo de aplicación-Tarifa vigente*. Recuperado de: http://www.sedapal.com.pe/estructura-tarifaria
- Sociedad Nacional de Minería, Petróleo y Energía. *Canon Minero*. Recuperado de: http://www.snmpe.org.pe/informes-y-publicaciones-snmpe/canon/cuadros-estadisticos/reporte-canon-minero-2015.html
- SUNAT. *Operatividad aduanera*. Recuperado de: http://www.sunat.gob.pe/operatividadaduanera/

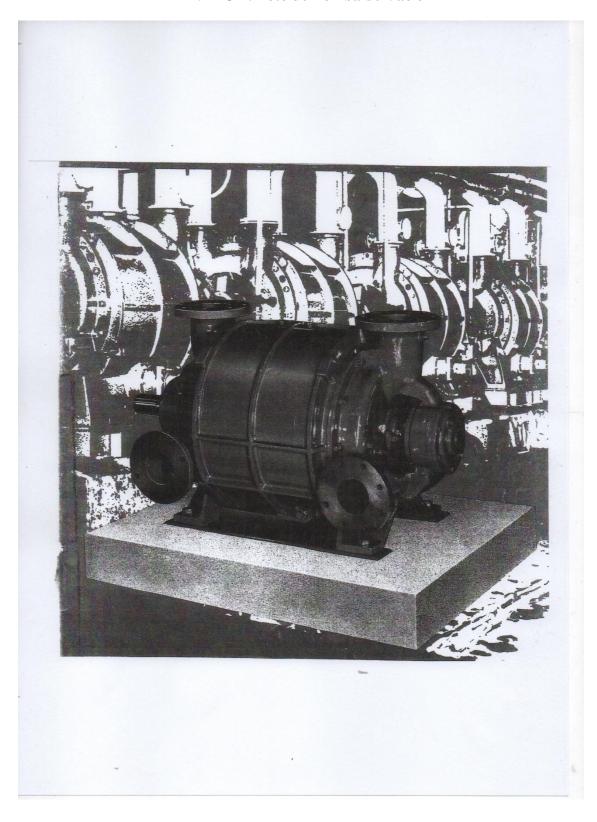
United Nations Contrade (UN). *Estadística para el desarrollo Internacional de las Empresas*. Recuperado de: http://www.trademap.org/country_selproductcountry.aspx

BIBLIOGRAFÍA


- Abusabal, M. (2014). Estudio de pre factibilidad para la instalación de una planta de producción de bolas de acero laminadas para molienda en minería. (Tesis para optar el título en Ingeniería Industrial). Lima: Universidad de Lima.
- Benassi, M. (2009). *Introducción a la investigación de mercados* (2ª ed.). México: Pearson Educación.
- Chiaverini, V. (1985). Aceros y fundición de hierros (1ª ed.). Brasil: ILAFA.
- Díaz Garay, B., Jarufe, B., Noriega, M.T. (2007). *Disposición de Planta* (2ª ed.). Lima: Editorial Universidad de Lima.
- Domínguez, J.A., García, S., Ruíz, A., Domínguez, M.A., Alvarez, M.J. (1995). *Dirección de Operaciones* (1ª ed.). España: Mc Graw-Hill
- Freeman, H. (1998). *Manual de prevención de la Contaminación Industrial* (1ª ed.). México: Mc Graw-Hill.
- Kotler, P., Gary, A. (2008). Fundamentos de marketing (8ª ed.). México: Pearson Education.
- Lescano Villegas, B. (2000). Fabricación de filtro de discos de 6 Ø X 4. (Tesis para optar el título de Ingeniero Mecánico Electricista). Lima: Universidad Nacional de Ingeniería.
- Marks, Theodore Baumeister, Avalone Eugene A. (1985). *Manual del Ingeniero Mecánico* (8^a ed.). México: McGraw-Hill
- Porter, M. E. (1987), Estrategia competitiva: Técnicas para el análisis de los sectores industriales. México: Continental
- Rieske, C. y Asfahl, D. (2010). *Seguridad industrial y administración de la salud* (6ª ed.). México: Pearson Education.
- Taggart, A.(1920). *Handbook of Mineral Dressing Ores and Industrial Minerals* (10^a ed.). España: Interciencia.
- Tokeshi, A. (2013). *Planifique, desarrolle y apruebe su tesis: guía para mejores resultados* (2ª ed.). Lima: Fondo editorial.
- Zevallos Sipán, E. (2015). Estudio de pre factibilidad para la instalación de una planta para el diseño y fabricación de calderas piro tubulares. (Tesis para optar el título en Ingeniería Industrial). Lima: Universidad de Lima.

ANEXO 1: Cartera estimada de principales proyectos mineros

Ampliación Toquepala Ampliación Bayovar Ampliación Marcoro Ampliación Carro Verde Ampliación Carro Verde Ampliación Toronocho Ampliación Toronocho Ampliación Toronocho Ampliación Toronocho Minas Conga Las Bambas San Luis Crespo Shabuindo Corrani	TACNA PILIRA ICA ARECUPA JUNIN PASCO MOQUEGUA CAUMARIA APURINAC ANCASH CUSCO ICA	Cu Fosfatos Fe Cu Cu Polimetalico	jul-16 jul-16 dic-18 jun-16 ene-18 mar-16 Ene-19 Dic-17 Mar-16 PD	1,200 520 1,500 4,600 1,350 450 3300 4800 10000	100,000 TMF / Cu y 3,100 TM / Mo Ampt. de 3.9 a 5.8 MB TM / Fostatos 3.5 MB TM / Fo 272,000 TMF / Cu 2,27 TMF / Mo 25,000 TMF / Cu PD / Cu 225,000 TMF / Cu 680,000 oz Au y 54,000 TMF / Cu
Ampliación Bayovar Ampliación Marmiliación Ampliación Cerro Verde Ampliación Cerro Verde Ampliación Tormocho Ampliación Tormocho Ampliación Pita. El Povvenir NSTRUCCIÓN Quellaveco Minas Conga Las Bambas San Luis Crespo Explotación de rellaves Shabuindo	PIURA ICA ARECUIPA JUNIN PASCO MOQUEGUA CAJAMARCA APURINA CAJAMARCA APURINA CAJAMARCA APURINA CAJAMARCA APURINA CAJAMARCA APURINA CAJAMARCA CAJAMA	Fosiatos Fe Cu Cu Polimetalico Cu Cu, Au Cu Au y Ag	jul-16 dic-18 jun-16 ene-18 mar-16 Ene-19 Dic-17 Mar-16	520 1,500 4,600 1,350 45	Ampl. do 3.9 a 5.8 MM TM / Fo 3.5 MM TM / Fo 272,000 TMF / Cu 7,257 TMF/ Mo 25,000 TMF / Cu PD / Cu 225,000 TMF / Cu 680,000 oz Au y 94,000 TMF Cu
Ampliación Bayovar Ampliación Marmiliación Ampliación Cerro Verde Ampliación Cerro Verde Ampliación Tormocho Ampliación Tormocho Ampliación Pita. El Povvenir NSTRUCCIÓN Quellaveco Minas Conga Las Bambas San Luis Crespo Explotación de rellaves Shabuindo	PIURA ICA ARECUIPA JUNIN PASCO MOQUEGUA CAJAMARCA APURINA CAJAMARCA APURINA CAJAMARCA APURINA CAJAMARCA APURINA CAJAMARCA APURINA CAJAMARCA CAJAMA	Fosiatos Fe Cu Cu Polimetalico Cu Cu, Au Cu Au y Ag	jul-16 dic-18 jun-16 ene-18 mar-16 Ene-19 Dic-17 Mar-16	520 1,500 4,600 1,350 45	Ampl. do 3.9 a 5.8 MM TM / Fo 3.5 MM TM / Fo 272,000 TMF / Cu 7,257 TMF/ Mo 25,000 TMF / Cu PD / Cu 225,000 TMF / Cu 680,000 oz Au y 94,000 TMF Cu
Ampliación Bayovar Ampliación Marmiliación Ampliación Cerro Verde Ampliación Cerro Verde Ampliación Tormombo Ampliación Tormombo Ampliación Pita. El Povvenir NSTRUCCIÓN Quellaveco Minas Conga Las Bambas San Luis Crespo Explotación de rellaves Shabuindo	ICA AREQUIPA JUNIN PASCO MOQUEGUA CAJAMARCA APURIMA CAJAMARCA APURIMA CUSCO	Fosiatos Fe Cu Cu Polimetalico Cu Cu, Au Cu Au y Ag	jul-16 dic-18 jun-16 ene-18 mar-16 Ene-19 Dic-17 Mar-16	520 1,500 4,600 1,350 45	Ampl. do 3.9 a 5.8 MM TM / Fo 3.5 MM TM / Fo 272,000 TMF / Cu 7,257 TMF/ Mo 25,000 TMF / Cu PD / Cu 225,000 TMF / Cu 680,000 oz Au y 94,000 TMF Cu
Ampliación Cerro Verde Ampliación Tormoncho Ampliación Pita. El Porvenir NSTRUCCIÓN Quellaveco Minas Conga Las Bambas San Luis Crespo Explotación de rellaves Shabuindo	AREQUIPA JUNIN PASCO MOQUEGUA CAJAMARCA APURIMAC ANCASH CUSCO	Cu Polimetalico Cu Cu, Au Cu Au y Ag	jun-16 ene-18 mar-16 Ene-19 Dic-17 Mar-16	4,600 1,350 45 3300 4800	272,000 TMF / Cu 7,257 TMF/ Mo 25,000 TMF / Cu PO 225,000 TMF / Cu 225,000 TMF / Cu 680,000 oz Au y 54,000 TMF Cu
Ampliacion Pita. El Porvenir NSTRUCCIÓN Quellaveco Minas Conga Las Bambas San Luis Crespo Explotacion de relaves Shahuindo	MOQUEGUA CAJAMARCA APURIMAC ANCASH CUSCO	Polimetalico Cu Cu, Au Cu Au y Ag	mar-16 Ene-19 Dic-17 Mar-16	3300 4800	25,000 TMF / Cu PD 225,000 TMF / Cu 680,000 oz Au y 54,000 TMF Cu
Quellaveco Minas Conga Las Bambas San Luis Crespo Explotación de relaves Shahuindo	CAJAMARCA APURIMAC ANCASH CUSCO	Cu, Au Cu Au y Ag	Dic-17 Mar-16	4800	680,000 oz Au y 54,000 TMF Cu
Quellaveco Minas Conga Las Bambas San Luis Crespo Explotación de relaves Shahuindo	CAJAMARCA APURIMAC ANCASH CUSCO	Cu, Au Cu Au y Ag	Dic-17 Mar-16	4800	680,000 oz Au y 54,000 TMF Cu
Minas Conga Las Bambas San Luis Crespo Explotacion de relaves Shahuindo	CAJAMARCA APURIMAC ANCASH CUSCO	Cu, Au Cu Au y Ag	Dic-17 Mar-16	4800	680,000 oz Au y 54,000 TMF Cu
Las Bambas San Luis Crespo Explotacion de relaves Shahuindo	APURIMAC ANCASH CUSCO	Cu Au y Ag	Mar-16		
Crespo Explotacion de relaves Shahuindo	CUSCO		pn		450,000 TMF / Cu y 5,000 TMF / Mo
Explotacion de relaves Shahuindo				PD	12,000 Oz Mes
Shahuindo		Au - Ag	PD 2016	110	2.7 M oz/Ag y 28,000 Oz de Au
	CAJAMARCA	Cu, Fe, Zn Au	2016 Dic-15	239 132	19,040 TMF/ Cu y 29,988 TMF / Zn y80,580 TM / Fe 84,000 Oz Au y 167,000 Oz de Ag
	PUNO	Ag	Dic-18	664	84,000 Oz Au y 167,000 Oz de Ag 8 Mill. oz Ag
Ollachea	PUNO	Au	Abr-17	180	113,000 Oz Au
Proyecto Fosfatos Tia Maria	PIURA	Fosfatos	2019	500	500,000 TM / Fosfatos
Tambomayo	AREQUIPA	Cu Au. Au	Jun-17 Jun-16	1400 250	120,000 TMF / Cu 150,000 oz/Au y 3M oz/Ag
Pampa de Pongo	AREQUIPA	Fe	Ene-18	1500	15 Mill TM / Fe
Puksqaqa	HUANCAVELICA	Cu-Mo	2016	706,3	40,000 TMF/ Cu
EVALUACIÓN					
Santa Ana	DUNO	40	pp.		
					5M oz/Ag
The state of the s					31,100 TMF / Cu 220,000 oz Au
Marcobre (Mina Justa)	ICA	Cu	2019	744	110,000 TMF / Cu
		Cu	2017	700	187,000 TMF / Cu
		8170		2300	20 Mill TM / Fe
Hilarión					119,000 TMF / Cu
Quechua					PD .
Don Javier	AREQUIPA	Cu	PD		60,000 TMF / Cu PD
Galeno	CAJAMARCA	Cu, Mo, Au, Ag	2017	2500	350,000 TMF/Cu, 82,000 Oz/Au, 2,300 TM/Mo, 2 M Oz/A
Haquira	APURIMAC	Cu-Mo	2019	2800	193,000 TMF / Cu
Los Calatos		Cu-Mo	2020	655	45,000 TMF / Cu y1,900 TMF / Mo
Cerro Ccopane Río Blanco		Fe	PD	PD	PD
CHIN WHITEU	PIURA	Cu	2019	1500	200,000 TMF / Cu
		Cu	2017	1000	
La Granja Los Chancas	CAJAMARCA APURIMAC	Cu	2017	1000	500,000 TMF / Cu
La Granja	CAJAMARCA		2017 2018 PD	1560	80,000 TMF / Cu
La Granja Los Chancas Salmueras de Sechura Rondoni	CAJAMARCA APURIMAC PIURA HUANUCO	Cu	2018		
La Granja Los Chancas Salmueras de Sechura Rondoni Zafranal	CAJAMARCA APURIMAC PIURA HUANUCO AREQUIPA	Cu Potasio Cu Cu, Au	2018 PD 2016 2017	1560 125	80,000 TMF / Cu 250,000 TM / KCl
La Granja Los Chancas Salmueras de Sechura Rondoni Zafranal Accha	CAJAMARCA APURIMAC PIURA HUANUCO AREQUIPA CUSCO	Cu Potasio Cu Cu, Au Zn, Pb	2018 PD 2016 2017 2017	1560 125 350 1122 345.5	80,000 TMF / Cu 250,000 TM / KCl 50,000 TMF / Cu
La Granja Los Chancas Salmueras de Sechura Rondoni Zafranal Accha Fosfatos Mantaro	CAJAMARCA APURIMAC PIURA HUANUCO AREQUIPA CUSCO JUNIN	Cu Potasio Cu Cu, Au Zn, Pb Fosfatos	2018 PD 2016 2017 2017 PD	1560 125 350 1122 345.5 850	80,000 TMF / Cu 280,000 TM / KCI 50,000 TMF / Cu 103,000 TMF / Cu y 0,000 cz Au 60,000 TMF / Pb Pb
La Granja Los Chancas Salmueras de Sechura Rondoni Zafranal Accha	CAJAMARCA APURIMAC PIURA HUANUCO AREQUIPA CUSCO JUNIN PASCO	Cu Potasio Cu Cu, Au Zn, Pb Fostatos Au, Cu	2018 PD 2016 2017 2017 PD PD	1560 125 350 1122 345.5 850 PD	80,000 TMF / Cu 280,000 TM / KCI 50,000 TMF / Cu 103,000 TMF / Cu y 0,000 cz Au 60,000 TMF / Zn, 40,000 TMF / Pb PD
La Granja Los Chancas Salmueras de Sechura Rondoni Zafranal Accha Fosfatos Mantaro Osiciacy II Anubia	CAJAMARCA APURIMAC PIURA HUANUCO AREQUIPA CUSCO JUNIN PASCO APURIMAC	Cu Potasio Cu Cu, Au Zn, Pb Fostatos Au, Cu Cu	2018 PD 2016 2017 2017 PD PD 2015	1560 125 350 1122 345.5 850 PD 90	80,000 TMF / Cu 250,000 TM / KCI 50,000 TMF / Cu 103,000 TMF / Cu 103,000 TMF / 2p, 40,000 az Au 60,000 TMF / Zp, 40,000 TMF / Pb PD PO 20,000 TMF / Cu
La Granja Los Chancas Salmueras de Sechura Rondoni Zafranal Accha Fostatos Mantaro Quicay II	CAJAMARCA APURIMAC PIURA HUANUCO AREQUIPA CUSCO JUNIN PASCO APURIMAC	Cu Potasio Cu Cu, Au Zn, Pb Fostatos Au, Cu	2018 PD 2016 2017 2017 PD PD	1560 125 350 1122 345.5 850 PD	80,000 TMF / Cu 280,000 TM / KCI 50,000 TMF / Cu 103,000 TMF / Cu y 0,000 cz Au 60,000 TMF / Zn, 40,000 TMF / Pb PD
N N H C H C D G H L	vanpa de Pongo rukaqaqa VALUACIÓN anta Ana tagistral an Gabriel (Ex-Chucapaca) tarcobre (Mina Justa) tichiquillary tierro Apurimac tañarisco tilarión tuechua on Javier taleno aquira	rampa de Pongo AREQUIPA Turkaqaga HUANCA/ELICA VALUACIÓN Ianta Ana PUNO tagistral ANCASH an Gabriel (Ex-Chucapaca) MOCUEGUA Iarcobre (Mina Justa) ICA fichiquillary CAJMARICA APURIMAC APURIMAC APURIMAC Idariariaco LAMBAYEQUE Illarión ANCASH CUSCO on Javier AREQUEPA Ialeno CAJMARICA aguiria APURIMAC asquiria APURIMAC cos Callatos MOCUEGUA	AREQUIPA Au. Ag lampa de Pongo AREQUIPA Fe HUANCAVELICA Cu-Ho viciaqaqa HUANCAVELICA Cu-Ho Ag lagistral ANCASH Cu an Gabriel (Ex-Chucapaca) MOQUEGUA Au Ag larcobre (Mina Justa) ICA Cu (Alampaca Apunimac Cu Gu Go Cu an Javier Areguira Apunimac Cu-Mo Apunimac Apunimac Apunimac Apunimac Cu-Mo Apunimac Apunimac Apunimac Apunimac Apunimac Cu-Mo Apunimac Apunimac Apunimac Cu-Mo	AREQUIPA AREQUIPA AREQUIPA Fe Ene-18 Au, Ag Jun-16 AREQUIPA Fe Ene-18 Fe Ene-18 VALUACIÓN HUANCAVELICA CU-Mo 2016 anta Ana PUNO Ag PD Lagistral ANCASH Cu 2016 2016 an Gabriel (Ex-Chucapaca) MOQUEGUA Au 2018 2018 Alarcobre (Mina Justa) ICA Cu 2017 Cu 2017 Ichiquillary CAJAMARCA Cu 2017 2016 Ichiquillary CAJAMARCA Cu 2016 2018 Illarión ANCASH Zn 2016 2018 Illarión ANCASH Zn 2016 2016 Illarión ANCASH Zn 2016 2017 con Javier AREQUIPA Cu PD 2017 2017 aleno CAJAMARCA Cu, Mo, Au, Ag 2017 2017 agiura APURBAC Cu-Mo 2019 2020	Jambonayo AREDUIPA Au. Ag Jun-16 250 Jampa de Pongo AREQUIPA Fe Ene-19 1500 Jarapa de Pongo HUANCAVELICA Cu-Mo 2016 766.3 VALUACIÓN anta Ana PUNO Ag PD 71 Lagistral ANCASH Cu 2016 480 an Gabriel (Ex-Chucapaca) MOQUEGUA Au 2018 520 Jarcobre (Mina Justa) ICA Cu 2019 744 Ichiquillay Cu AJMARCA Cu 2017 700 Ierro Agurimac APURIMAC Fe 2020 2300 Lafarisco LAMBAYEZUE Cu 2018 1599 Illarión ANCASH Zn 2016 470 uschus CUESO Cu 2017 490 on Javier AREQUIPA Cu PO 600 aleno CAJMARCA Cu, Mo, Au, Ag 2017 2500 aguira <t< td=""></t<>


ANEXO 2: Ensamble

ANEXO 3: Especificaciones técnicas de fundición

	AND	BLANCOS	FUNDIDOS	HIERROS	HODUL ARES	FUNDIDOS	NERRAL	LANINARES	50010003	миза	WENCION KIGHEL	W	_	DE AUSTERITION	ACEROS HANGARESO	TV.	WHITHEION MINER		WEDTY WOLLDENO	30		*	MDIO	CAREONO	- 15	AL LAMBORD	ACERUS	BA.	MATERIALES				
	HAC	304	3811	nac nac	29.84	HNC	- 384	нес	HC -	ig.	AAC	Alt	-	AAC	And	AAC -	NW.	海		, 24th	AHE	N.	-	A	326	-	-	357 080	504	COL			
	- 94 Ct	. 91 . 91	. 92 N	- 91 HE	- 83 M	4. N.	33	HLC - 73 45	72		62 A	0	ANC - 51 Oth	t	- 47	4	- 30	× 31 019	AMC - 27 OF	25	27	. 12 005	-= 500		94			- D) A)	COM SA	691993			
· · · · · · · · · · · · · · · · · · ·	CLIMAX 15 - 3 ALLOY	AL HERS I	NI-HAND II	HEEHAHITE WA	NSTH A-106 HEEHANITE SH-100	ASTN A-339 80-60-01	01 - 4 - 25 5FE-W MICE	WINNESS OF ALCOHOL SE	ASTR A LE LI CLASS NO PERIORI LE	06 75475 17-81-V M	April	Z,	H GK-40 (1. 51. 13	The state of the s	HU "SA +5-1, HE-7	V21-V W-158	0,644	9 34 Cr. NI, No. 6	PORCE MARTENSATION	CHOMOLA BENTILLEG	VI21 1-24	- A	A 9541	454	2.1H A-148	Serve VSditt	ASTM A-27	A151 0020	EQUIVALENTES	ESPECIFICACIONES			
	0.30 0.50	0.70 0.40	0 40 O 40	0.00	2.20 0.00 0.00	7.60	3. 40 2.40 0.20	2.50 0.40	1.10 1.60 0.60 0.30 1.30 1.80 0.80 max.	10 0.80 D	9.59 max. max. 2	0 20 2.00 2.00	3. 35 1.00 0.30 3. 35 1.00 0.30	10 0.40 12.0	1.10 0.40 11.0 2	0.11 04.0 01.1	75 8 75 0.50 V	0.32 0.30 0.70	0.80 0.40 0.60 9	0 50 0 50 0 60 1	0.30 0.30 10.70 1.60	0.36	0.15 0.30 0.20 0	99 99 99 99 99 99 99 99 99 99 99 99 99	6.30	5,46 0.40 0.50 0.66 0.70	0. 70	0.10 0.30 0.50	6 5 8	VOLNTRID MOTOTSOBARD			
		4.75	1.40 4.00				_		. 30	.50	00	3,00	00	-	*50		00	66	88	80	800	30	. 10	0.30		-	-	1	Cr Ni	CA		70	
	2.50 0.10	0,40	0.50 0.40 0.15	0.70	0.20 0.06 0.50 eax.	0.06	0.06	0.10	0.08	1	0. 50	0 50	0.04	2.00. 0.0%	0.96 0.05		0.25 0.24	0.15	0.70 0.05			0.05	0.05	0.05 0.05	0.05	0.05 0.05	0.05	0.05	7			PRODUCTOS	
	0.06	0.15	0.15	-	0.04 CU: 0.50		0.04 mox.	0.12 max.	3	cu:	0.04 N 0.20	0.04	0.04 80×.	0.05	0.05	9.05	0.04	nex.	0.06	0.06	0.04	0.05	0.05	0.03	0.05	0.05	0.65	0.05	20000 2	(%) POP CIENTO	ES	CTOS	
	-	40,0	45,000	50,0	30 100,000		60,000	30,,000	-	50,000		85,000	71,500	120,000	115,000	000,011	95,000	114,000	175,000	145,000	100,000	101,000	78,500	105,000	96,520	89,000	78,000	65,000		5	PE		
		,000 73,0	00 31.5	,000 35.0	30 70.0	56.0	00 42.0	00 21.0		00 35.0	-		00 50.0	00 84.0	00 80.5	00.77.0	100 (6.5	6.cB 000	127			990 71-9	_		DO 67.6		260 55.0	000 45.5	the/puly Kg/au'	1 4 0 8 4	CIFICACIONE	NORMALE	
			-				45,000			-	-	65,100		52,000	55,000	66,46	0,000,00	65,000	142,000		-4	60.500	h7,000		93,000	-		- 1	BA LIMITE OF	5 1 11 4 4 1 1 4 0 8 4	ACION	m	
	H				00 45.0	00 42.0	31.5			-	90 35.0	00 31.5		00 36.4	36.5	2.11. 00	90 42.0	65	00 95.4	63.0	-	00 42.3	00 33.0		30.1	-	28.1	100 26.0	or Thencia		VES	DE	
					0	.0 3	.5 10	-		-	0 25	.5 35		4 40	90		.0 17	0		8		-	,n 25		9		26	.0 28	EIA FLORG		TEC	FUNI	
							100							30		35		30		7		35	42		=	- 1	31	48	In. T Min.	FISICAS	ECNICAS	UNDICION	
	F	86	99	66	52	99	88	T T	991	13	Jan.	E.	2700	200	22	200	1.370	270	550	300 m 300 m 300 m		- Table 1	ēŝ	957	200	2005	88	170	M.M. B	A 5	S	Z	
	но	ne	an	00 0 55	25 %	95	975	8 16	9.2 9.7	70	12 0 61	£ £ 5	22	_	75	-	-	_	_	-		75 22	15 B	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4.5 00 SE	4 8 i	73	200	Re.		Table of the last		
	RESISTE CHOQUE TERMICO	NO RESISTE CHOQUE TERMICO	RESISTE CHOQUE TEXNICO	RESISTE CHOQUE TERMICO		A CANADA	The state of the s		material profits as a contract that the contract to the state of the contract to the contrac		SE EMFRAGILIZA EN EL BANGO DE 500° A 650° C.	PE SOO"A 650" C.		TANIENTO ENCINA DE 300° C.	SE PRAGILIZA ENCIMA DE	LOS 300°C	SE ENDINECE NOW OXICORIE		EL OXICORYE PRODUCE	EL OXICORTE PUEDE PRODUCIR	ENDURECE POR OXICORTE	ENDURECE POH OXICONTE		ENDUNCTE FOR OXICOPY!	ENDURECE POR GYICORTE				LA ACCION DEL CALOR	RECOMENDAC			
	1197ad	MUY FRAGIL	FRAGIL	MOY FRAGIL	REGULAR / FRAGIL	REGULAR / FRAGIL	REGULAR	FRAGIL	FRAGIL	REGULAR / FHAGIL	RECULAR / SVENA	REGULAR / DUENA	REGULAR	EXCELENTE	ARBUG	EXCELENTE.	VKJUII	BULSA	REGULAN / FRASEL	REGULAR	REGULAR / BUENA	VN3018	EXCELENTE	REGILAR	REGULAR	Visini	EXCELENTE	CXCELENTE	PERSISTENCIA A LA ROTURA	ECOMENDACIONES PARA EL			

ANEXO 4: Foto de Bomba de Vacío

ANEXO 5: Cotización

FUNDICIÓN Y MAESTRANZA INDUSTRIAL S.R.L.

Jr. Luis Carranza 2250 - Lima Telf.: 336-5460 / Fax: 336-7966 E-mail: fmiperu@fmiperu.com

Fundición y Mecanizado de Piezas en Materiales Ferrosos y no Ferrosos, para la linea: Minera, Embotelladora - Textil - Envasadora - Automotriz Pesqueras - Agrícolas - Eléctricas, etc.

Nro 626 2015

Lima, 21 de Setiembre del 2015

Señores
SOCIEDAD MINERA EL BROCAL

ATT: Ing. Antonio Peña

Estimados señores

De acuerdo a su solicitud de cotización les presentamos nuestro siguiente pres

ITEM CANT DESCRIPCIÓN PRECIO UNIT

US\$

1 Fabricación de Bomba de Vacio de sello de agua modelo FMI CL 2002

Consta de

Cabezales de fierro fundido

Casco en fierro fundido

Impulsor tipo jaula de ardilla en fierro fundido Balanceado

Conos en Fierro fundido

Eje de acero AISI 1045

Rodamientos SKF

Incluye sistema de cañería para control de entrada de agua en fierro galvanizado Manifold de entrada y salida en fierro fundido

Completamente armado

15766.00

Agregar I.G.V.

TIEMPO DE ENTREGA FORMA DE PAGO VALIDEZ DE LA OFERTA

35 días

50% adelanto, 50% contraentrega

30 días

Esperando vernos favorecidos con su orden quedamos de ustedes

Atentamente,

Ing. Julio Carranza Ibañez Asesor comercial

Fundición y Maestranza Industrial SRL

ANEXO 6: Encuesta de servicio al cliente

Encuesta sobre la intensión e intensidad de compra de Bombas de Vacío Rotativo BC Industrias SAC.

1.	¿Posee bombas de vacío en su empresa?
	SI NO
2.	¿Qué tipo de Bomba de Vacío posee?
	ROTATIVA OTROS
3.	¿Cuál es la capacidad volumétrica de sus bombas?
	700 CFM
	1000 CFM
	2000 CFM
	4000 CFM
	6000 CFM
	9000 CFM
4.	¿A qué sector industrial pertenece su empresa?
	Alimentos
	Pesquero
	Minero
	Papelero
	Farmacéutico
	Textil
	Energético
	Construcción
	Bebidas
5.	¿Estaría dispuesto a comprar Bombas de Vacío Rotativo BC Industrias
	SAC, sabiendo sus beneficios?
	SI NO

6.	¿Con	qué :	seg	uridad	d comp	raría u	na Bom	ba de '	Vacío R	Cotative	o BC
	Indus	trias	SA	C?							
	Dond	e 10	es "	muy s	eguro	de com _l	prarlo"	y 1 "n	o lo cor	nprarí	a"
	1		2	3	4	5	6	7	8	9	10
7.	Sobre	su p	rov	eedor	de Boi	mbas de	e Vacío,	¿Cuál	es la v	ariable	e a medir si
	desea	com	pra	r o re	parar l	a Bomb	oa de su	empre	esa?		
					T						
	_			ismo p	roveed	or por:		Cambio	a otro	prove	edor por:
		Calid								=/-	ılidad
		Precio			\perp					= _	ecio
	S	Servi	cio							Se	rvicio
	Elabo	ració	n pı	ropia							
	4										
		S								5	
			- '	15					Ka,	, , -	
				5/	V7/	A	ΕT	PH	Kr.		