ESTUDIO DE PREFACTIBILIDAD PARA LA
INSTALACIÓN DE UNA PLANTA
PRODUCTORA DE CONSERVA DE MANGO
EN ALMÍBAR

Trabajo de investigación para optar el Título Profesional de Ingeniero Industrial

Adrián José Vega Pérrigo
Código 20081064

Julio Cesar Cobián Malaver
Código 20070268

Asesor
Manuel Fernando Montoya Ramírez

Lima – Perú
Noviembre del 2017
ESTUDIO DE PREFACTIBILIDAD PARA LA
INSTALACIÓN DE UNA PLANTA
PRODUCTORA DE CONSERVA DE MANGO
EN ALMÍBAR
TABLA DE CONTENIDO

<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESUMEN EJECUTIVO</td>
<td>1</td>
</tr>
<tr>
<td>EXECUTIVE SUMMARY</td>
<td>2</td>
</tr>
<tr>
<td>CAPÍTULO I: ASPECTOS GENERALES</td>
<td>3</td>
</tr>
<tr>
<td>1.1. Problemática</td>
<td>3</td>
</tr>
<tr>
<td>1.2. Objetivos de la investigación</td>
<td>3</td>
</tr>
<tr>
<td>1.3. Alcances y limitaciones de la investigación</td>
<td>4</td>
</tr>
<tr>
<td>1.4. Justificación del tema</td>
<td>5</td>
</tr>
<tr>
<td>1.5. Hipótesis del trabajo</td>
<td>6</td>
</tr>
<tr>
<td>1.6. Marco referencial de la investigación</td>
<td>6</td>
</tr>
<tr>
<td>1.7. Marco conceptual</td>
<td>7</td>
</tr>
<tr>
<td>CAPÍTULO II: ESTUDIO DE MERCADO</td>
<td>9</td>
</tr>
<tr>
<td>2.1. Aspectos generales del estudio de mercado</td>
<td>9</td>
</tr>
<tr>
<td>2.1.1. Definición comercial del producto</td>
<td>9</td>
</tr>
<tr>
<td>2.1.2. Principales características del producto</td>
<td>11</td>
</tr>
<tr>
<td>2.1.2.1. Usos y características del producto</td>
<td>11</td>
</tr>
<tr>
<td>2.1.2.2. Bienes sustitutos y complementarios</td>
<td>11</td>
</tr>
<tr>
<td>2.1.3. Determinación del área geográfica que abarcará el estudio</td>
<td>12</td>
</tr>
<tr>
<td>2.1.4. Análisis del sector</td>
<td>12</td>
</tr>
<tr>
<td>2.1.5. Determinación de la metodología que se empleará en la investigación de mercado</td>
<td>14</td>
</tr>
<tr>
<td>2.2. Análisis de la demanda</td>
<td>14</td>
</tr>
<tr>
<td>2.2.1. Demanda histórica</td>
<td>14</td>
</tr>
<tr>
<td>2.2.1.1. Importaciones / Exportaciones</td>
<td>14</td>
</tr>
<tr>
<td>2.2.1.2. Producción Nacional</td>
<td>15</td>
</tr>
<tr>
<td>2.2.1.3. Demanda interna aparente (DIA)</td>
<td>15</td>
</tr>
<tr>
<td>2.2.2. Demanda potencial</td>
<td>16</td>
</tr>
<tr>
<td>2.2.2.1. Patrones de consumo: incremento poblacional, consumo per cápita, estacionalidad</td>
<td>16</td>
</tr>
<tr>
<td>2.2.2.2. Determinación de la demanda potencial</td>
<td>16</td>
</tr>
</tbody>
</table>
2.2.3. Demanda mediante fuentes primarias .. 17
2.2.3.1. Diseño y aplicación de encuestas u otras técnicas 17
2.2.3.2. Determinación de la demanda ... 17
2.2.4. Proyección de la demanda ... 17
2.2.5. Consideraciones sobre la vida útil del proyecto ... 18
2.3. Análisis de la oferta ... 19
2.3.1. Empresas productoras, importadoras y comercializadoras 19
2.3.2. Competidores actuales y potenciales ... 20
2.4. Determinación de la demanda para el proyecto ... 20
2.4.1. Segmentación del mercado ... 20
2.4.2. Selección de mercado meta ... 22
2.4.3. Demanda específica para el proyecto ... 22
2.5. Definición de la estrategia de comercialización .. 26
2.5.1. Políticas de comercialización y distribución .. 26
2.5.2. Publicidad y promoción ... 26
2.5.3. Análisis de precios ... 27
2.5.3.1. Tendencia histórica de los precios ... 27
2.5.3.2. Precios actuales .. 27
2.6. Análisis de disponibilidad de los insumos principales 28
2.6.1. Características principales de la materia prima .. 28
2.6.2. Disponibilidad de la materia prima .. 29
2.6.3. Costos de materia prima ... 30
CAPÍTULO III: LOCALIZACIÓN DE PLANTA ... 32
3.1. Identificación y análisis detallado de los factores de localización 32
3.2. Identificación y descripción de las alternativas de localización 38
3.3. Evaluación y selección de localización .. 39
3.3.1. Evaluación y selección de la macro localización 39
3.3.2. Evaluación y selección de la micro localización 41
CAPÍTULO IV. TAMAÑO DE PLANTA .. 45
4.1. Relación tamaño-mercado ... 45
4.2. Relación tamaño-recursos productivos ... 46
4.3. Relación tamaño-tecnología ... 47
4.4. Relación tamaño-inversión ... 47
4.5. Relación tamaño-punto de equilibrio ... 48
<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6</td>
<td>Selección del tamaño de planta</td>
<td>49</td>
</tr>
<tr>
<td>CAPÍTULO V. INGENIERÍA DEL PROYECTO</td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>5.1</td>
<td>Definición técnica del producto</td>
<td>51</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Especificaciones técnicas del producto</td>
<td>51</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Composición del producto</td>
<td>51</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Diseño gráfico del producto</td>
<td>52</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Regulaciones técnicas al producto</td>
<td>52</td>
</tr>
<tr>
<td>5.2</td>
<td>Tecnologías existentes y procesos de producción</td>
<td>53</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Naturaleza de la tecnología requerida</td>
<td>53</td>
</tr>
<tr>
<td>5.2.1.1</td>
<td>Descripción de las tecnologías existentes</td>
<td>53</td>
</tr>
<tr>
<td>5.2.1.2</td>
<td>Selección de la tecnología</td>
<td>61</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Proceso de producción</td>
<td>63</td>
</tr>
<tr>
<td>5.2.2.1</td>
<td>Descripción del proceso</td>
<td>63</td>
</tr>
<tr>
<td>5.2.2.2</td>
<td>Diagrama de proceso: DOP</td>
<td>66</td>
</tr>
<tr>
<td>5.2.2.3</td>
<td>Balance de materia y energía</td>
<td>67</td>
</tr>
<tr>
<td>5.3</td>
<td>Características de las instalaciones y equipos</td>
<td>69</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Selección de la maquinaria y equipos</td>
<td>69</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Especificaciones de la maquinaria</td>
<td>69</td>
</tr>
<tr>
<td>5.4</td>
<td>Capacidad instalada</td>
<td>78</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Cálculo de la capacidad instalada</td>
<td>78</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Cálculo detallado del número de máquinas requeridas</td>
<td>80</td>
</tr>
<tr>
<td>5.5</td>
<td>Resguardo de la calidad y/o inocuidad del producto</td>
<td>80</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Calidad de la materia prima, de los insumos, del proceso y del producto</td>
<td>80</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Estrategia de mejora</td>
<td>81</td>
</tr>
<tr>
<td>5.6</td>
<td>Estudio de impacto ambiential</td>
<td>84</td>
</tr>
<tr>
<td>5.7</td>
<td>Seguridad y salud ocupacional</td>
<td>88</td>
</tr>
<tr>
<td>5.8</td>
<td>Sistema de mantenimiento</td>
<td>90</td>
</tr>
<tr>
<td>5.9</td>
<td>Programa de producción</td>
<td>93</td>
</tr>
<tr>
<td>5.9.1</td>
<td>Factores para la programación de la producción</td>
<td>93</td>
</tr>
<tr>
<td>5.9.2</td>
<td>Programa de producción</td>
<td>95</td>
</tr>
<tr>
<td>5.10</td>
<td>Requerimiento de insumos, servicios y personal</td>
<td>95</td>
</tr>
<tr>
<td>5.10.1</td>
<td>Materia prima, insumos y otros materiales</td>
<td>95</td>
</tr>
<tr>
<td>5.10.2</td>
<td>Servicios: energía eléctrica, agua, vapor, combustible, etc.</td>
<td>96</td>
</tr>
<tr>
<td>5.10.3</td>
<td>Determinación del número de operarios y trabajadores indirectos</td>
<td>99</td>
</tr>
<tr>
<td>Capítulo</td>
<td>Título</td>
<td>Página</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>5.10.4.</td>
<td>Servicios de terceros</td>
<td>100</td>
</tr>
<tr>
<td>5.11.</td>
<td>Disposición de planta</td>
<td>100</td>
</tr>
<tr>
<td>5.11.1.</td>
<td>Características físicas del proyecto</td>
<td>100</td>
</tr>
<tr>
<td>5.11.2.</td>
<td>Determinación de las zonas físicas requeridas</td>
<td>105</td>
</tr>
<tr>
<td>5.11.3.</td>
<td>Cálculo de áreas para cada zona</td>
<td>106</td>
</tr>
<tr>
<td>5.11.4.</td>
<td>Dispositivos de seguridad industrial y señalización</td>
<td>114</td>
</tr>
<tr>
<td>5.11.5.</td>
<td>Disposición general</td>
<td>117</td>
</tr>
<tr>
<td>5.11.6.</td>
<td>Disposición de detalle</td>
<td>121</td>
</tr>
<tr>
<td>5.12.</td>
<td>Cronograma de implementación del proyecto</td>
<td>122</td>
</tr>
<tr>
<td>6.1.</td>
<td>Formación de la organización empresarial</td>
<td>123</td>
</tr>
<tr>
<td>6.2.</td>
<td>Requerimiento de personal directivo, administrativo y de servicios</td>
<td>123</td>
</tr>
<tr>
<td>6.3.</td>
<td>Estructura organizacional</td>
<td>126</td>
</tr>
<tr>
<td>7.1.</td>
<td>Inversiones</td>
<td>128</td>
</tr>
<tr>
<td>7.1.1.</td>
<td>Estimación de las inversiones de largo plazo (tangibles e intangibles)</td>
<td>128</td>
</tr>
<tr>
<td>7.1.2.</td>
<td>Estimación de las inversiones de corto plazo (Capital de trabajo)</td>
<td>132</td>
</tr>
<tr>
<td>7.2.</td>
<td>Costos de producción</td>
<td>133</td>
</tr>
<tr>
<td>7.2.1.</td>
<td>Costos de las materias primas</td>
<td>133</td>
</tr>
<tr>
<td>7.2.2.</td>
<td>Costo de la mano de obra directa</td>
<td>134</td>
</tr>
<tr>
<td>7.2.3.</td>
<td>Costo indirecto de fabricación (materiales indirectos, mano de obra indirecta y costos generales de la planta)</td>
<td>135</td>
</tr>
<tr>
<td>7.3.</td>
<td>Presupuestos operativos</td>
<td>138</td>
</tr>
<tr>
<td>7.3.1.</td>
<td>Presupuesto de ingreso por ventas</td>
<td>138</td>
</tr>
<tr>
<td>7.3.2.</td>
<td>Presupuesto operativo de costos</td>
<td>138</td>
</tr>
<tr>
<td>7.3.3.</td>
<td>Presupuesto operativo de gastos</td>
<td>139</td>
</tr>
<tr>
<td>7.4.</td>
<td>Presupuestos financieros</td>
<td>140</td>
</tr>
<tr>
<td>7.4.1.</td>
<td>Presupuesto de Servicio de deuda</td>
<td>140</td>
</tr>
<tr>
<td>7.4.2.</td>
<td>Presupuesto de Estado de Resultados</td>
<td>141</td>
</tr>
<tr>
<td>7.4.3.</td>
<td>Presupuesto de Estado de Situación Financiera</td>
<td>142</td>
</tr>
<tr>
<td>7.4.4.</td>
<td>Flujo de caja de corto plazo</td>
<td>142</td>
</tr>
<tr>
<td>7.5.</td>
<td>Flujo de fondos netos</td>
<td>143</td>
</tr>
<tr>
<td>7.5.1.</td>
<td>Flujo de fondos económicos</td>
<td>143</td>
</tr>
<tr>
<td>7.5.2.</td>
<td>Flujo de fondos financieros</td>
<td>144</td>
</tr>
</tbody>
</table>
CAPÍTULO VIII. EVALUACIÓN ECONÓMICA Y FINANCIERA DEL PROYECTO

8.1. Evaluación económica: VAN, TIR, B/C, PR ..145
8.2. Evaluación financiera: VAN, TIR, B/C, PR ..147
8.3. Análisis de ratios (liquidez, solvencia, rentabilidad) e indicadores económicos y financieros del proyecto ...148
8.4. Análisis de sensibilidad del proyecto ..151

CAPÍTULO IX. EVALUACIÓN SOCIAL DEL PROYECTO ..154
9.1. Identificación de las zonas y comunidades de influencia del proyecto154
9.2. Análisis de indicadores sociales (valor agregado, densidad de capital, intensidad de capital, generación de divisas) ..155

CONCLUSIONES ...158
RECOMENDACIONES ...159
REFERENCIAS ...160
ANEXOS ..165
ÍNDICE DE TABLAS

Tabla 2.1: Exportación de conserva de mango al extranjero en toneladas, 2011-2016 ...15
Tabla 2.2: Demanda interna aparente en toneladas de conserva de mango de Perú en el período 2011-2016 ...16
Tabla 2.3: Consumo per cápita de mango a nivel nacional según regiones16
Tabla 2.4: Demanda de conserva de mango en el período 2011-201617
Tabla 2.5: Demanda proyectada de conserva de mango..................................18
Tabla 2.6: Principales empresas productoras de conserva de mango en almíbar19
Tabla 2.7: Segmentación demográfica por niveles socio-económicos de Lima Metropolitana 2016 ..21
Tabla 2.8: Ingresos y gastos según NSE 2016 – Lima Metropolitana22
Tabla 2.9: Guía de aproximaciones de participación de mercado24
Tabla 2.10: Demanda específica para el proyecto en toneladas para el período 2017-2021 ..25
Tabla 2.11: Composición química del mango para 100 gramos de pulpa29
Tabla 2.12: Producción anual de mango en el Perú (toneladas)30
Tabla 2.13: Precios en chacra de mango al año 201531
Tabla 3.1: Distancia en kilómetros desde la chacra a las posibles ubicaciones de planta ..33
Tabla 3.2: Nivel de educación de la población de 15 y más años de edad, según área de residencia, 2011 – 2014 ...35
Tabla 3.3: Salarios mensuales de trabajadores según el puesto de trabajo35
Tabla 3.4: Costo de servicio agua potable – Lima ..36
Tabla 3.5: Costo de servicio agua potable – Piura ...36
Tabla 3.6: Costo de servicio agua potable - Lambayeque36
Tabla 3.7: Tarifas de consumo de energía eléctrica por departamento37
Tabla 3.8: Costo del metro cuadrado por departamentos37
Tabla 3.9: Denuncias de faltas, según departamento, 2006 - 201438
Tabla 3.10: Tabla de enfrentamiento de factores de macro localización40
Tabla 3.11: Escala de calificación de alternativas ...40
Tabla 3.12: Macro localización de la planta ...41
Tabla 3.13: Costo por metro cuadrado en los distintos valles43
Tabla 3.14: Matriz de enfrentamiento de factores de micro localización44
Tabla 3.15: Calificación para la selección de micro localización de la planta44
Tabla 4.1: Demanda del proyecto de conserva de mango45
Tabla 4.2: Frascos por año de conserva de mango ...46
Tabla 4.3: Frascos por año de conserva de mango ...47
Tabla 4.4: Frascos por año de conserva de mango en almíbar47
Tabla 4.5: Costos fijos anuales ...48
Tabla 4.6: Costos variables ...49
Tabla 4.7: Tamaño-punto de equilibrio para frascos de conserva de mango49
Tabla 4.8: Frascos producidos anualmente en función al tamaño de planta50
Tabla 5.1: Composición química del mango para 100 gramos de pulpa51
Tabla 5.2: Capacidades por máquina ...79
Tabla 5.3: Cálculo del número de máquinas requeridas ..80
Tabla 5.4: Tabla de Puntos Críticos ..82
Tabla 5.5: Tabla de Calidad HACCP ..83
Tabla 5.6: Matriz de Leopold ..84
Tabla 5.7: Matriz de aspectos e impactos ambientales ...85
Tabla 5.8: Matriz IPER ...89
Tabla 5.9: Programa de mantenimiento preventivo para llenadora de almíbar91
Tabla 5.10: Programa de mantenimiento preventivo para la marmita92
Tabla 5.11: Programa de producción anual de pulpa de mango95
Tabla 5.12: Requerimiento de materia prima e insumos en kilogramos96
Tabla 5.13: Requerimiento de materiales en unidades ...96
Tabla 5.14: Consumo anual de agua ...97
Tabla 5.15: Consumo anual de energía eléctrica en planta (S/.)98
Tabla 5.16: Cantidad de operarios en área de producción99
Tabla 5.17: Trabajadores en el Área administrativa ..99
Tabla 5.18: Servicios de tercerización y personal requerido100
Tabla 5.19: Número adecuado de inodoros por número de personas103
Tabla 5.20: Términos para determinar el área total ..106
Tabla 5.21: Área de zona de recepción de materia prima e insumos107
Tabla 5.22: Área de zona de selección de materia prima e insumos107
Tabla 5.23: Área de zona de producción ... 108
Tabla 5.24: Área de laboratorio de calidad .. 109
Tabla 5.24: Área zona de comedor .. 109
Tabla 5.26: Área zona administrativa .. 110
Tabla 5.27: Área zona de vestidores de personal de planta 110
Tabla 5.28: Área zona de servicios higiénicos de personal de planta 110
Tabla 5.29: Área zona de servicios higiénicos de personal administrativo 111
Tabla 5.30: Área zona de servicios higiénicos de área de recepción 111
Tabla 5.31: Área zona de estacionamiento y patio de maniobras 111
Tabla 5.32: Área zona de almacén de insumos 112
Tabla 5.33: Área zona de almacén de productos terminados 112
Tabla 5.34: Área zona de seguridad y vigilancia 112
Tabla 5.35: Área zona de lavado de indumentaria 113
Tabla 5.36: Área total de la planta .. 113
Tabla 5.37: Extintores por zonas en planta .. 115
Tabla 5.38: Forma, significado y aplicación de las señales de seguridad y salud ocupacional ... 116
Tabla 5.39: Códigos relacionales .. 117
Tabla 7.1: Costo del terreno ... 128
Tabla 7.2: Costo de edificaciones y construcciones 129
Tabla 7.3: Costo de la maquinaria ... 130
Tabla 7.4: Muebles y enseres ... 130
Tabla 7.5: Equipo auxiliar ... 131
Tabla 7.6: Equipos de cómputo ... 131
Tabla 7.7: Activos fijos intangibles ... 131
Tabla 7.8: Estimación de las inversiones de corto plazo 132
Tabla 7.9: Costo de la materia prima .. 133
Tabla 7.10: Costo de materia prima, insumos y otros materiales 134
Tabla 7.11: Costo de la mano de obra directa 135
Tabla 7.12: Materiales indirectos ... 135
Tabla 7.13: Mano de obra indirecta ... 136
Tabla 7.14: Costos generales de la planta anuales 136
Tabla 7.15: Depreciación fabril ... 137
Tabla 7.16: Costos indirectos de fabricación 137
Tabla 7.17: Presupuesto de ingresos por ventas de frascos de conserva de mango en almíbar ... 138
Tabla 7.18: Presupuesto operativo de costos ... 139
Tabla 7.19: Presupuesto operativo de gastos ... 140
Tabla 7.20: Inversión total del proyecto .. 140
Tabla 7.21: Presupuesto de Estado de Resultados ... 141
Tabla 7.22: Estado de Resultados financiero ... 142
Tabla 7.23: Flujo de caja mensual ... 143
Tabla 7.24: Flujo de fondo económico .. 143
Tabla 7.25: Flujo de fondo financiero .. 144
Tabla 8.1: Interpretación del flujo económico ... 146
Tabla 8.2: Interpretación del flujo financiero ... 147
Tabla 8.3: Ratios del proyecto ... 148
Tabla 8.4: Sensibilidad económica al precio del producto 151
Tabla 8.5: Sensibilidad financiera al precio del producto .. 152
Tabla 8.6: Sensibilidad económica al costo del mango .. 152
Tabla 8.7: Sensibilidad financiera al costo del mango .. 152
Tabla 8.8: Sensibilidad económica al costo de oportunidad 153
Tabla 8.9: Sensibilidad financiera al costo de oportunidad 153
Tabla 9.1: Generación de divisas ... 157
ÍNDICE DE FIGURAS

Figura 2.1: Conserva de mango en almíbar ...10
Figura 2.2: Proyección de la demanda por regresión lineal.................................18
Figura 2.3: Empresas competidores actuales y potenciales en el mercado nacional ..20
Figura 2.4: Cálculo del tamaño de la muestra ..23
Figura 2.5: Precio actual de conserva de mango en supermercado Wong27
Figura 2.6: Precio actual de conserva de mango en supermercado Metro28
Figura 2.7: Calendario de cosecha de mango del mercado internacional30
Figura 3.1: Evolución del PBI del Perú desde el año 1995 al 201534
Figura 3.2: Ubicación de las tres alternativas de micro localización42
Figura 5.1: Producto Mangoood - Conserva de mango en almíbar52
Figura 5.2: DOP para la elaboración de conserva de mango en almíbar67
Figura 5.3: Balance de materia y energía para la elaboración de conserva de mango en almíbar ...68
Figura 5.4: Lavadora de frutas ...70
Figura 5.5: Peladora para mango – PL6M ...71
Figura 5.6: Marmita ..72
Figura 5.7: Máquina esterilizadora ...73
Figura 5.8: Máquina llenadora de almíbar ...74
Figura 5.9: Máquina taponadora ...75
Figura 5.10: Máquina etiquetadora ...76
Figura 5.11: Máquina codificadora ...77
Figura 5.12: Factores de la producción ...93
Figura 5.13: Guarda fija de seguridad ...114
Figura 5.14: Señalización a tener en cuenta ...116
Figura 5.15: Casillero tabla relacional ...117
Figura 5.16: Tabla Relacional ..118
Figura 5.17: Diagrama Relacional de Actividades ..119
Figura 5.18: Identificación de actividades teóricas ..119
Figura 5.19: Identificación de actividades del proyecto120
Figura 5.20: Diagrama relacional de espacios ..120
Figura 5.21: Plano de disposición a detalle ...121
Figura 5.22: Actividades para la ejecución del proyecto122
Figura 6.1: Organigrama de la empresa ...127
Figura 9.1: Imagen satelital de las zonas de influencia del proyecto154
ÍNDICE DE ANEXOS

Anexo 1: Encuesta conserva de mango en almíbar .. 166
Anexo 2: Cotización de importación de mango Kent .. 174
Anexo 3: Método de ranking de factores .. 175
Anexo 4: Cotizaciones de maquinaria ... 177
Anexo 5: Sistema HACCP ... 185
Anexo 6: Cotizaciones del terreno para la planta ... 187
Anexo 7: Servicio de deuda .. 189
Anexo 8: Costo de oportunidad .. 191
RESUMEN EJECUTIVO

El estudio de prefactibilidad para la instalación de una planta productora de conserva de mango en almíbar, tiene por finalidad cubrir un nicho de mercado, en el cual las personas buscan cuidar su alimentación a través del consumo de productos saludables.

Por este motivo, el enfoque del proyecto es elaborar un producto que cumpla con los estándares de calidad exigidos por el mercado y el Estado Peruano.

La metodología que se ha empleado para la investigación, ha sido mediante la recolección de datos de diferentes herramientas tales como Compendio Estadístico, Perú en Números, Data Trade, Veritrade, páginas de internet, páginas nacionales como PromPerú, análisis del INEI, ProQuest, EBSCOhost, entre otros. Adicional a ello se ha realizado una encuesta para determinar la aceptación del producto dentro del mercado limeño, así como las diferentes herramientas aprendidas durante la etapa universitaria.

Finalizado el presente estudio, se concluyó que el mismo es técnicamente viable, ya que debido a la globalización, la adquisición de maquinarias y equipos para el proceso productivo no es un factor limitante.

También el proyecto es financiera y económicamente viable, puesto que los indicadores del VAN y TIR resultaron positivos, por ende el proyecto será rentable a lo largo de su vida útil.

Asimismo, debido a que toda actividad industrial genera un impacto en el medio ambiente, el presente proyecto busca minimizar al máximo cualquier efecto que repercuta en la zona donde sería desarrollado.

Finalmente es comercialmente viable, puesto que a través de la encuesta se determinó que existe un mercado con el poder adquisitivo que demandaría el producto, dado a que hay una tendencia en aumento hacia el consumo de productos de origen natural y con valor agregado.
EXECUTIVE SUMMARY

The prefeasibility study for the installation of a mango in syrup canning plant aims to cover a market niche, in which people seek to take care of their food by consuming healthy products. For this reason, the focus of the project is to develop a product that complies with the quality standards required by the market and the Peruvian State.

The methodology that has been used for the research has been through the collection of data from different tools such as Statistical Compendium, Peru in Numbers, Data Trade, Veritrade, Internet pages, national pages such as PromPerú, INEI analysis, ProQuest, EBSCOhost, among others. In addition, a survey was conducted to determine the acceptance of the product within the market of Lima, as well as the different tools learned during the university stage.

After the present study, it was concluded that it is technically viable, because due to globalization, the acquisition of machinery and equipment for the productive process is not a limiting factor.

The project is also financially and economically viable, since the VAN and IRR indicators were positive, therefore the project will be profitable throughout its useful life.

Also, because all industrial activity generates an impact on the environment, this project seeks to minimize to the maximum any effect that has an impact on the area where it would be developed.

Finally, it is commercially viable, since through the survey it was determined that there is a market with the purchasing power that the product would demand, given that there is a growing trend towards consumption of products of natural origin and with added value.
CAPÍTULO I: ASPECTOS GENERALES

1.1. Problemática

En la actualidad las personas buscan cuidar su alimentación a través del consumo de productos naturales y sin colorantes estando dispuestos a pagar más por este tipo de productos.

Actualmente, hay una marcada tendencia en la industria de los alimentos hacia el desarrollo y fabricación de productos derivados de frutos tropicales. Esto es debido al creciente interés de los consumidores por alimentos “saludables”. (Wall et al., 2015)

Según Hoang Nguyen, el consumo de trozos de fruta fresca es una tendencia en la que los consumidores demandan productos de fruta con alta calidad, apariencia, textura y sabor fresco. El consumo de conserva de fruta está en desarrollo en el mercado peruano, por ende presenta un gran potencial por explotar dado que existe poca oferta en Perú.

El mercado gourmet de productos innovadores y de alta calidad se encuentra en auge en el país, ya que los compradores de este sector están informados de sus beneficios. Por lo tanto, el presente estudio tiene como finalidad introducir al mercado nacional un producto que cumpla con la demanda y exigencias de los consumidores.

1.2. Objetivos de la investigación

Objetivo general

- Desarrollar un estudio que permita establecer la viabilidad técnica, financiera, ambiental, económica y comercial para la instalación de una planta productora de conserva de mango en almíbar para el consumo nacional.

Objetivos específicos

- Realizar un estudio de mercado para identificar y analizar las empresas que actualmente comercializan conserva de mango en almíbar y de esta manera, elaborar estrategias adecuadas de marketing para la comercialización en el
mercado donde tendrá que ser posicionado.

- Evaluar la viabilidad del proceso de producción de conserva de mango en almíbar mediante la obtención de información sobre la disponibilidad de materia prima y mano de obra con la que se cuenta actualmente en el Perú.

- Evaluar la viabilidad tecnológica del proyecto para ofrecer un producto de calidad mediante procesos de control y aplicando las nuevas tecnologías que permitan asegurar la inocuidad del producto.

1.3. Alcances y limitaciones de la investigación

Alcances:

- Se determinará la viabilidad del proyecto de pre-factibilidad realizando encuestas para determinar la aceptación del producto a desarrollar.
- Se analizarán los riesgos inherentes al mismo, para evitar las posibles pérdidas económicas a largo plazo.
- Se evaluará las zonas de comercialización del producto así como la mejor posible ubicación de la planta.

Limitaciones:

- El presente estudio de pre-factibilidad de conserva de mango en almíbar nos revela que en el Perú el mango crece por estaciones.
- La mayor cantidad de intermediarios, son comerciantes con medios de transporte que cambian de producto de comercialización según la estación de cosecha y están totalmente desvinculados de la producción.
- Las informaciones de precios recolectadas en los medios electrónicos, se refieren a un promedio de todas las variedades comercializadas en los mercados, no refiriéndose a ninguna variedad en particular.

En conclusión, aunque existan ciertas limitaciones, con la información obtenida se visualiza la magnitud del mercado local de mango, la oferta y demanda, las preferencias, precios y la distribución.
1.4. Justificación del tema

- Social y ambiental

La actividad agroindustrial está ligada directamente con la sociedad, con los agricultores quienes serán los proveedores de materia prima, los comerciantes mayoristas del mercado limeño y las personas que se emplearán en la compañía.

Como consecuencia, la cadena productiva del mango generará una mejor calidad de vida creando diversos puestos de trabajo.

Toda actividad industrial genera un impacto ambiental, por ello se realizará un estudio para evaluar los riesgos al medio ambiente.

Por ello se dará un tratamiento adecuado a los materiales desechables, residuos sólidos, orgánicos y la reutilización del agua.

Adicional a ello, el producto promovería los buenos hábitos de consumo alimenticio, mejorando la calidad de vida de los consumidores.

El estudio sería social y ambientalmente viable, ya que se busca promover el consumo de productos saludables conservando el medio ambiente del entorno en que se desarrollará.

- Económica

Existe un creciente interés por el consumo de productos naturales, en especial se observa un crecimiento de la demanda de productos con valor agregado de los sectores socioeconómicos A, B y C.

Un estudio realizado por la Asociación Peruana de Empresas de Investigación de Mercados (APEIM, 2016) concluyó que el promedio de gasto mensual en alimentos en los sectores A/B es de S/.892 y en el sector C es de S/.689.

Por ello el producto es atractivo si se lo enfoca a este grupo de personas que buscan mejorar sus hábitos alimenticios con la garantía de comprar un producto de calidad. Se realizará un estudio donde se determine proveedores confiables, que brinden materia prima de calidad a un buen precio, maquinarias y equipos de garantía.

El estudio será económicamente viable dado a la capacidad adquisitiva de los niveles socioeconómicos a los cuales va a estar dirigido el proyecto.
• Técnica

Se ha visto una mejora tecnológica en el cultivo del mango y sus derivados, garantizando que los productos sean de buena calidad y cumplan con las exigencias en el mercado nacional.

El proceso de conserva de frutas se basa en crear aislamiento de la fruta con el aire sumergiéndola en almíbar (líquido con azúcar) y finalmente con un proceso de sellado hermético del envase que puede ser lata o vidrio.

La falta de oxígeno y el uso de cloro destruyen la mayor parte de las enzimas y de los microorganismos que causan el deterioro del alimento. (“Procesado de frutas, 2015, pág. 23).

Debido a la globalización, la importación de maquinarias y equipos ha permitido la modernización de la tecnología empleada en este tipo de industrias.

El proyecto es técnicamente viable, ya que en la actualidad se pueden adquirir los equipos necesarios para el procesamiento del producto garantizando la calidad del mismo.

1.5. Hipótesis del trabajo

El estudio de prefactibilidad para la elaboración de conserva de mango en almíbar cubrirá un nicho de mercado, en el cual las personas buscan cuidar su alimentación a través del consumo de productos naturales.

1.6. Marco referencial de la investigación

 Este estudio permite conocer los procesos de la elaboración de fruta en almíbar.

 Este estudio preliminar se diferencia, ya que éste está orientado hacia los productos en conserva de tomate; mientras que el presente estudio se basa en
productos de conserva de mango.

 Este seminario será como base para el conocimiento de qué tipo de tecnologías se han empleado para el proceso de conserva en almíbar.

1.7. Marco conceptual

A continuación se explicará el procedimiento a seguir en el desarrollo de la presente investigación, así como las herramientas a utilizar.

- Para el primer capítulo se utilizarán datos secundarios como las bases de datos de la universidad, seminarios, tesis antiguas para el marco referencial, artículos de revistas y periódicos.

- Para el desarrollo del capítulo II, el cual se refiere a estudio de mercado y determinación de la demanda, se utilizarán datos de Compendio Estadístico, Perú en Números, Data Trade, Veritrade, páginas de internet, páginas nacionales como PromPerú, análisis del INEI, investigación de los productores nacionales entre otros. Luego se determinarán cantidades de consumo para los próximos 5 años mediante el análisis de la demanda histórica encontrada. Adicional a ello, se elaborará una encuesta para determinar el precio, la intensidad, frecuencia, intención de compra del producto a elaborar.

- En el capítulo, Localización de planta, se utilizará Excel, así como el método de ranking de factores que emplea un sistema de evaluación tomando en consideración los factores de localización de planta, tales como mercado, materias primas, mano de obra, transporte, servicios, energía, y otros. Este método será usado tanto para la macro localización y micro localización de la planta.

- Para determinar el tamaño de planta, se utilizará el método de aproximaciones sucesivas la cual consiste en determinar los límites superior o tamaño máximo e inferior o tamaño mínimo y, dentro de tales límites, analizar un tamaño intermedio.
Para el capítulo de ingeniería del proyecto se realizará una investigación de la tecnología y equipos necesarios. Por ello se realizará un diagrama de operaciones del proceso y balance de materia prima para determinar el número de máquinas necesarias y satisfacer la demanda del proyecto, por ende se solicitará cotizaciones de las mismas a diferentes proveedores del mercado nacional y extranjero. Se aplicará el método de Guerchet, carta Gantt, el análisis matricial, relacional y ergonómico. También se tendrá en cuenta los parámetros para la construcción de una planta tales como: factor edificio y factor servicio.

Adicional a ello se evaluará el impacto ambiental que pueda generar el proyecto a realizarse.

Para llevar a cabo las operaciones administrativas y operativas en la planta se detallará el perfil del personal requerido por la empresa.

Para determinar la rentabilidad del proyecto se analizará los índices financieros y económicos como el VAN, TIR, P/R y B/C. Para llegar a ello se deberá obtener los ingresos, costos y gastos que se deriven del proyecto mediante presupuestos operativo, financiero y flujos de fondos netos.

Se tendrá en cuenta el impacto social que pueda generar el proyecto a las zonas aledañas mediante el análisis de factores sociales.
CAPÍTULO II: ESTUDIO DE MERCADO

2.1. Aspectos generales del estudio de mercado

2.1.1. Definición comercial del producto

El proceso de obtención de conserva de mango en almíbar, consiste en la separación de la cáscara y la pepa del fruto, mediante procesos tecnológicos adecuados y su posterior envasado.

El Perú se caracteriza por la producción de 3 variedades de mango los cuales son:

Kent: Es la variedad de mayor tamaño, cuyo peso está en un rango de 500 a 800 gramos, en la madurez el color de la cáscara pasa de un color verde a naranja con amarillo rojizo. Posee una apariencia ovalada, con un sabor agradable, jugoso, de baja fibrosidad y tiene un alto contenido de azúcares. (Javier Maza, 2009, párr.7).

Haden: Tiene un tamaño mediano, cuyo peso varía entre 380 a 700 gramos, en la madurez el color de la cáscara pasa de un color verde a amarillo rojizo. Posee una apariencia ovalada, de alta fibrosidad y sabor agradable. (Javier Maza, 2009, párr.8).

Tommy Atkins: De un tamaño grande, con un peso aproximado de 600 gramos y aspecto ovalado. A diferencia de las otras variedades el período de conservación es mayor, pero las características en cuanto al sabor y aroma no son tan agradables. (Javier Maza, 2009, párr.9).

Explicada estas tres variedades, se ha escogido el mango fresco de la variedad Kent, porque es de buen tamaño, es bien jugoso, contiene mucha pulpa y poca fibra. Además es la variedad de mango que más se cosecha en el Perú.

El producto es natural, elaborado a partir de mango. No contiene saborizantes, colorantes, es decir, pulpa 100% natural. La presentación del producto final de la conserva de mango en almíbar será en frascos de vidrio y con un peso neto de 750 gramos. Se ha considerado la presentación en frasco de vidrio, ya que el contenido es visible para el cliente, es más amigable con el medio ambiente dado a que es fácil de reciclar, e incluso puede ser utilizado para otros fines. En cuanto a los niveles de
producto tenemos:

- **Producto básico**: Es un producto de buen sabor, agradable al paladar, con un alto contenido nutritivo y sin la presencia de residuos químicos que satisface la necesidad de alimento.

- **Producto real**: El producto será presentado en un frasco de vidrio con tapa metálica, el cual el cliente podrá reutilizar una vez terminado la conserva de mango. Éste contará con un peso neto de 750 gramos según los resultados de la encuesta realizado a los potenciales consumidores (ver Anexo 1). La conserva se basa en pulpa de mango en mitades, la cual será debidamente tratada, sin cáscara ni pepa. Adicional a ello contendrá almíbar para preservar la misma. La etiqueta incluirá la información del fabricante, características del producto, así como los registros exigidos.

- **Producto aumentado**: Se contará con un servicio de atención de llamadas y página web para que el consumidor pueda realizar quejas, recomendaciones y consultas. (figura 2.1)

Figura 2.1
Consera de mango en almíbar

Elaboración propia

La partida arancelaria de la conserva de mango en almíbar es: 2008993000, cuya
La descripción es: “Frutas u otros frutos y demás partes comestibles de plantas, preparados o conservados de otro modo, incluso con adición de azúcar u otro edulcorante o alcohol, no expresados ni comprendidos en otra parte”

En cuanto a la clasificación internacional industrial uniforme (CIIU) el producto forma parte de la clase 1513: Elaboración y conservación de frutas, legumbres y hortalizas.

2.1.2. Principales características del producto

2.1.2.1. Usos y características del producto

La conserva de mango en almíbar puede ser empleada de diversas maneras:

- Como postre después de las comidas.
- Para consumo directo en jugos.
- Para la elaboración de licores.
- Como ingrediente para platos gourmet.

En cuanto a las características del mango tenemos:

- Color: Varía del color amarillo al típico naranja del mango maduro.
- Olor: Característico del mango maduro adecuadamente procesado
- Sabor: Sabor característico sin indicios de fermentación u oxidación.
- Empaque: Frascos de vidrio, con tapa en la parte superior y con un peso neto de 750 gramos.
- Etiqueta: Autoadhesivas con especificación del producto, peso neto, fecha de producción, fecha de vencimiento.

2.1.2.2. Bienes sustitutos y complementarios

En el mercado peruano, alrededor del 80% de las conservas de frutas son de durazno, mientras que el 20% restante son de piña, pera, papaya, mango, aguaymanto, cereza y cóctel de frutas. Lo que se busca es que estos productos sustitutos sean más consumidos en los hogares. (“Frutas en conserva: ¡Qué rico negocio!”, 2013, párr.15).

En cuanto a conserva de mango, existen pocas empresas en el mercado nacional
que distribuyan el producto, por ello se presentará un producto de sabor agradable y de fácil procesamiento, cuya fruta es muy aceptada en el mercado peruano.

2.1.3. Determinación del área geográfica que abarcará el estudio

Se ha tomado en cuenta que para la comercialización del mango en almíbar sea el mercado limeño, puesto que hoy es el centro económico y financiero del país, con un alto índice de consumo de productos gourmet. El consumo de alimentos sanos y naturales en el Perú se ha incrementado en los últimos años, a través del consumo de productos gourmet elaborados con insumos nacionales. (“Peruanos cambian sus hábitos alimenticios y apuestan por productos gourmet”, 2016, párr.1).

El proyecto está dirigido a la clase A, B y C de la población de Lima, puesto que tienen mayor poder adquisitivo.

Según un estudio realizado por APEIM 2016, la clase A gasta un promedio de S/.997 al mes en alimentación por hogar y sus ingresos superan los S/. 10,860; clase B gasta un promedio de S/.787 al mes en alimentación por hogar y sus ingresos superan los S/. 5,606; mientras que la clase C, gasta S/.687.

2.1.4. Análisis del sector

- Amenaza de los productos sustitutos:

Se debe tener en cuenta la existencia en el mercado nacional de productos sustitutos en diferentes formas, ya sea en conservas, en fruta fresca, en fruta seca, jugos o pulpas de papaya, piña, guayaba, durazno, plátano, tuna, palta, melón, granadilla, mandarina, naranja, sandia, chirimoya, kiwi que se comercializan en Lima.

Los compradores pueden optar por cambiar de producto, ya que son de un sector de estatus medio y alto, por ende se concluye que la amenaza de los productos sustitutos es alta.
• **Rivalidad entre los competidores:**

El número de competidores que producen la conserva de mango en almíbar es escaso. Existen competidores que tienen una participación de mercado alta en exportaciones, pero a nivel nacional es mínimo. El principal competidor del mercado nacional es: Valle Fértil. Dado a que sólo hay un competidor del mismo producto, se concluye que la rivalidad entre los competidores es baja.

• **Amenaza de nuevos competidores entrantes:**

El mercado es muy atractivo, además se pueden analizar que no existen muchas barreras de entrada, debido a que no existe una variación del mismo (conserva de mango) que sea muy marcada. También el requisito de capital para formación de una empresa similar no es muy elevado.

Por ello se puede afirmar que la amenaza de ingreso de nuevos competidores es alta.

• **Poder de negociación de los compradores o clientes:**

Para poder analizar más detalladamente este punto se deben tomar en cuenta algunos factores, como el producto se venderá por medio de canales de distribución como los supermercados, quienes serán los principales clientes. Al existir pocos canales hay una mayor dependencia en los canales de distribución y éstos tienen mayor poder de negociación.

El poder de negociación también viene dado con el volumen de compra. Si algún comprador destaca por su alto volumen, podrá negociar con más poder. Por lo que se puede deducir que el poder de negociación de los compradores es alto.

• **Poder de negociación de los proveedores o vendedores:**

Como se sabe existe una gran producción a nivel nacional de frutas incluido el mango, debido a esto es que son muchos los proveedores mayoristas que se pueden encontrar en la ciudad de Lima, dado que existen diferentes puntos de venta donde se puede encontrar diversidad de precio y calidad de producto. Por ello se deduce que el poder de negociación de los proveedores es bajo.
2.1.5. Determinación de la metodología que se empleará en la investigación de mercado

“La recolección de datos consiste en seleccionar uno o varios métodos disponibles, adaptándolos o desarrollándolos de acuerdo al enfoque del estudio, alcance de la investigación y planteamiento del problema; aplicando los instrumentos y preparar los datos obtenidos para su posterior análisis.” (Hernández, Fernández y Baptista, 2014, p. 262).

A continuación se explicará el procedimiento a seguir en el desarrollo de la presente investigación de mercado, así como las herramientas a utilizar.

Para el capítulo de estudio de mercado, se utilizarán datos de Compendio Estadístico, Perú en Números, Data Trade, Veritrade, páginas de internet, páginas nacionales como PromPerú, análisis del INEI, ProQuest, EBSCOhost e investigación de los productores nacionales entre otros. Luego se determinarán cantidades de consumo para los próximos 5 años mediante el análisis de la demanda histórica encontrada.

Luego de determinar la segmentación del mercado y verificar quiénes forman parte del mercado objetivo, se elaborará una encuesta para determinar el precio, la intensidad, frecuencia e intención de compra del producto a elaborar.

2.2. Análisis de la demanda

2.2.1. Demanda histórica

2.2.1.1. Importaciones / Exportaciones

Importaciones: Existe una importación histórica mínima de conserva de mango.

Exportaciones: En la tabla 2.1 se muestra la demanda histórica de conserva de mango en almíbar que realiza Perú al extranjero, según la fuente de información Data Trade. Para el año 2016 se está considerando la demanda proyectada ya que se tiene información hasta el mes de julio del presente año.
Tabla 2.1
Exportación de conserva de mango al extranjero en toneladas, 2011-2016

<table>
<thead>
<tr>
<th>Año</th>
<th>Exportación conserva de mango (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>8,486.26</td>
</tr>
<tr>
<td>2012</td>
<td>5,172.38</td>
</tr>
<tr>
<td>2013</td>
<td>5,697.44</td>
</tr>
<tr>
<td>2014</td>
<td>6,669.58</td>
</tr>
<tr>
<td>2015</td>
<td>4,666.82</td>
</tr>
<tr>
<td>2016</td>
<td>7,666.86</td>
</tr>
</tbody>
</table>

Fuente: Data Trade. (2016)
Elaboración propia

2.2.1.2. Producción Nacional

Perú se caracteriza por ser un país productor de frutas, entre ellas el mango. Un estudio realizado por la Asociación de Productores y Exportadores de Mango (APEM, 2011) concluyó que del total de la producción en todas las categorías de mango, el 68% se dirige a la exportación y el 32% al consumo interno.

Según la Asociación Peruana de Productores de Mango (PROMANGO) la demanda de conserva de mango a nivel nacional es del 10%.

2.2.1.3. Demanda interna aparente (DIA)

Para el cálculo de la demanda interna aparente del proyecto, nos basaremos en la fórmula.

\[DIA = P + I - X + Dif. S \]

En la tabla 2.2 se muestra la demanda interna aparente de conserva de mango en el Perú.
Tabla 2.2
Demanda interna aparente en toneladas de conserva de mango de Perú en el período 2011-2016

<table>
<thead>
<tr>
<th>Año</th>
<th>Producción</th>
<th>Importación</th>
<th>Exportación</th>
<th>DIA (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>11,254.68</td>
<td>-</td>
<td>8,486.26</td>
<td>2,768.41</td>
</tr>
<tr>
<td>2012</td>
<td>5,905.05</td>
<td>-</td>
<td>5,172.38</td>
<td>732.66</td>
</tr>
<tr>
<td>2013</td>
<td>14,630.04</td>
<td>-</td>
<td>5,697.44</td>
<td>8,932.60</td>
</tr>
<tr>
<td>2014</td>
<td>12,072.02</td>
<td>0.05</td>
<td>6,669.58</td>
<td>5,402.49</td>
</tr>
<tr>
<td>2015</td>
<td>14,870.63</td>
<td>43.52</td>
<td>4,666.82</td>
<td>10,247.32</td>
</tr>
<tr>
<td>2016</td>
<td>16,560.34</td>
<td>1.19</td>
<td>7,666.86</td>
<td>8,894.67</td>
</tr>
</tbody>
</table>

Fuente: Veritrade, (2016). Elaboración propia

2.2.2. Demanda potencial

2.2.2.1. Patrones de consumo: incremento poblacional, consumo per cápita, estacionalidad

El mango es una de las frutas de mayor aceptación en el mercado peruano. La estacionalidad del mango va desde octubre a marzo, es decir, tiene una estacionalidad de 6 meses. El consumo per cápita de mango a nivel nacional es en promedio 1.6 kg, según la encuesta realizada por el Instituto Nacional de Estadística e Informática (INEI), detallada en la tabla 2.3.

Tabla 2.3
Consumo per cápita de mango a nivel nacional según regiones

<table>
<thead>
<tr>
<th>Principales productos</th>
<th>Total</th>
<th>Lima</th>
<th>Resto País</th>
<th>Área</th>
<th>Región natural</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.6</td>
<td>2.1</td>
<td>1.4</td>
<td>1.8</td>
<td>0.9</td>
</tr>
<tr>
<td>Mango (Kg.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.2.2.2. Determinación de la demanda potencial

Según datos demográficos expuestos por APEIM, Lima tiene una población de 10’012,437 habitantes. Del total de habitantes, el 68.9% pertenecen a los estratos sociales A, B y C. Además el consumo per cápita de mango en Lima Metropolitana es de 2.1 kilogramos, es decir la demanda potencial será el cálculo de la población limeña por el consumo per cápita y siendo multiplicado por el factor 0.689 que representa los estratos sociales de Lima, dando como resultado 14,487 toneladas.
2.2.3. Demanda mediante fuentes primarias

2.2.3.1. Diseño y aplicación de encuestas u otras técnicas

 Debido a que el producto se venderá en el mercado nacional, la elaboración de una encuesta será necesaria para determinar la aceptación, intención de mercado, presentación y precio del producto. (Ver Anexo 1).

2.2.3.2. Determinación de la demanda

Para el cálculo de la demanda de conserva mango se ha utilizado datos históricos de la fuente Perú en Números, siendo éstos los que se detallarán a continuación en la tabla 2.4.

Tabla 2.4
Demanda de conserva de mango en el período 2011-2016

<table>
<thead>
<tr>
<th>Año</th>
<th>Demanda conserva de mango (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>2,768.41</td>
</tr>
<tr>
<td>2012</td>
<td>732.66</td>
</tr>
<tr>
<td>2013</td>
<td>8,932.60</td>
</tr>
<tr>
<td>2014</td>
<td>5,402.49</td>
</tr>
<tr>
<td>2015</td>
<td>10,247.32</td>
</tr>
<tr>
<td>2016</td>
<td>8,894.67</td>
</tr>
</tbody>
</table>

Elaboración propia

2.2.4. Proyección de la demanda

Para la proyección de la demanda de conserva de mango se ha tomado en cuenta los datos históricos y haciendo uso de la técnica de regresión lineal, que es una técnica cuantitativa, la cual permite el cálculo de los pronósticos para períodos futuros. Por lo tanto se obtuvo como resultado la siguiente ecuación de la demanda:

\[
Y = 1586x + 10120
\]

Esta ecuación se obtuvo por medio de regresión lineal, siendo la demanda proyectada plasmada la que se muestra en la tabla 2.5 y en la figura 2.2 se muestra la demanda proyectada por regresión lineal. El \(R^2 \) es 0.9958.
Tabla 2.5

Demanda proyectada de conserva de mango

<table>
<thead>
<tr>
<th>Año</th>
<th>Demanda proyectada conserva de mango (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>11,727.55</td>
</tr>
<tr>
<td>2018</td>
<td>13,317.41</td>
</tr>
<tr>
<td>2019</td>
<td>14,907.27</td>
</tr>
<tr>
<td>2020</td>
<td>16,497.13</td>
</tr>
<tr>
<td>2021</td>
<td>18,086.99</td>
</tr>
</tbody>
</table>

Elaboración propia

Figura 2.2

Proyección de la demanda por regresión lineal

![Proyección de la demanda](image)

Elaboración propia

2.2.5. Consideraciones sobre la vida útil del proyecto

El uso de recurso como: materiales, tecnología y recursos humanos, en un estudio de prefactibilidad tiene como objetivo resolver una necesidad social, técnica y económica. De esta manera se pueden aprovechar los recursos para mejorar las condiciones de vida de una comunidad.

La vida útil en un proyecto es el tiempo en el que la empresa es capaz de realizar sus actividades sin ningún tipo de percance y generando utilidades.

Según el estudio realizado por William Rocha, “las fases del proyecto son: pre
inversión, inversión y operación. La primera fase empieza cuando existe una posibilidad de invertir en un negocio aparentemente atractivo, para lo cual se simulan a través de un estudio de pre inversión. De ser positivo, se debería formalizar el proyecto mediante un documento llamado acta. El establecimiento de la organización encargado de realizar el proyecto es parte de la fase de inversión; la cual debe desarrollar la ejecución directamente o contratar los servicios de consultoría y construcción; diseñar, adquirir y poner en operación maquinaria, equipos, estructuras y materiales. La última fase comienza cuando el bien o servicio se lanza al mercado. Esta etapa es la que tiene mayor duración donde se generarán los flujos de efectivo neto para posteriormente recuperar lo invertido”.

2.3. Análisis de la oferta

2.3.1. Empresas productoras, importadoras y comercializadoras.

Como se explicó anteriormente, existe una importación histórica mínima de conserva de mango.

En la tabla 2.6 se muestran las principales empresas productoras especializadas en la comercialización de conservas de mango, las cuales en su mayoría se dedican a la exportación de este producto.

Tabla 2.6
Principales empresas productoras de conserva de mango en almíbar

<table>
<thead>
<tr>
<th>Empresas</th>
<th>Tipo de empresa</th>
<th>Porcentaje de participación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agroindustrias AIB</td>
<td>Productora / Exportadora</td>
<td>26.60%</td>
</tr>
<tr>
<td>Frutos del Perú</td>
<td>Productora / Exportadora</td>
<td>14.90%</td>
</tr>
<tr>
<td>Agromar Industrial</td>
<td>Productora / Exportadora</td>
<td>14.40%</td>
</tr>
<tr>
<td>Camposol</td>
<td>Productora / Exportadora</td>
<td>10.60%</td>
</tr>
<tr>
<td>Frutos Tongorrape</td>
<td>Productora / Exportadora</td>
<td>6.90%</td>
</tr>
<tr>
<td>Danper Trujillo</td>
<td>Productora / Exportadora</td>
<td>6.80%</td>
</tr>
<tr>
<td>Otros</td>
<td>Productora / Exportadora</td>
<td>19.8%</td>
</tr>
</tbody>
</table>

Fuente: Veritrade Perú. (2016)
Elaboración Propia

Con respecto al mercado nacional, se ha comprobado que en los supermercados y tiendas gourmet, la principal competencia para el producto conserva de mango en almíbar es la empresa Valle Fértil. Esta empresa maquila su producción a Danper
Trujillo, es decir, Valle Fértil cuenta con una marca propia, pero su producto es elaborado por un tercero, para posteriormente comercializarlo.

2.3.2. Competidores actuales y potenciales

En la figura 2.3, se consideran a los competidores actuales y potenciales en el mercado peruano con respecto a la elaboración de conserva de mango.

Figura 2.3

Empresas competidores actuales y potenciales en el mercado nacional

Nota: Se muestran las marcas de las empresas potenciales y principal competidor
Fuente: Google imágenes. (2016)

2.4. Determinación de la demanda para el proyecto

2.4.1. Segmentación del mercado

La empresa al desear seleccionar un grupo de población del mercado consumidor de conserva de mango en almíbar, ha optado por realizar una segmentación de mercado.

De este modo, la empresa podrá promover de forma más eficiente, al enfocar su producto, sus canales de distribución y programas de comunicación a los consumidores seleccionados.

Para determinar la segmentación del mercado de este proyecto se tomará en cuenta lo siguiente:
• **Segmentación geográfica**

Para el presente estudio, se ha decidido segmentar el mercado de Lima Metropolitana, dado a que actualmente es la ciudad con mayor población del país y cuenta con los consumidores de mayor poder adquisitivo.

• **Segmentación demográfica**

No existe un impedimento en la edad para que una persona pueda consumir conserva de mango en almíbar. Actualmente Lima tiene una población de 10’012,437 de habitantes según la tabla 2.7. El estudio realizado por APEIM indica que del total de habitantes, el 68.9% pertenecen a los estratos sociales A, B y C.

Tabla 2.7

Segmentación demográfica por niveles socio-económicos de Lima Metropolitana 2016

<table>
<thead>
<tr>
<th>N de personas 10’012,437</th>
<th>NSE</th>
<th>Estrato</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSE A</td>
<td>A</td>
<td>A1</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A2</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>4.8</td>
</tr>
<tr>
<td>NSE B</td>
<td>B</td>
<td>B1</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B2</td>
<td>13.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>21.7</td>
</tr>
<tr>
<td>NSE C</td>
<td>C</td>
<td>C1</td>
<td>27.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C2</td>
<td>14.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>42.4</td>
</tr>
<tr>
<td>NSE D</td>
<td>D</td>
<td>D</td>
<td>23.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>23.3</td>
</tr>
<tr>
<td>NSE E</td>
<td>E</td>
<td>E</td>
<td>7.3</td>
</tr>
</tbody>
</table>

Fuente: Asociación Peruana de Empresas de Investigación de Mercados. (2016)
Elaboración propia

Otra segmentación demográfica que se tomará en cuenta para el estudio es la del gasto promedio en alimentos de las familias limeñas, esto con el objetivo de poder analizar las necesidades, deseos y periodicidad de consumo de los niveles socioeconómicos, según la tabla 2.8.
Tabla 2.8
Ingresos y gastos según NSE 2016 – Lima Metropolitana

<table>
<thead>
<tr>
<th>PROMEDIOS</th>
<th>TOTAL</th>
<th>NSE A</th>
<th>NSE B</th>
<th>NSE C</th>
<th>NSE C1</th>
<th>NSE C2</th>
<th>NSE D</th>
<th>NSE E</th>
</tr>
</thead>
</table>

Fuente: Asociación Peruana de Empresas de Investigación de Mercados, (2016)
Elaboración propia

2.4.2. Selección de mercado meta

Después de haber analizado las variables de segmentación de mercado se define como mercado meta los niveles socio-económicos A, B y C. Este mercado representa el 68.9% de la población perteneciente a estos estratos sociales, que cuenta con un estimado de 6,9 millones de personas según la Asociación Peruana de Empresas de Investigación de Mercados.

Estas personas cuentan con el nivel económico que les da la posibilidad de adquirir este producto el cual puede ser consumido de diversas formas: como ingrediente de un postre, refresco, licores y platos gourmet.

Se analizarán las estrategias de marketing a utilizar, debido a que es un segmento exigente con el producto que va a consumir, pues buscan calidad y buena presentación del mismo.

2.4.3. Demanda específica para el proyecto

La demanda del proyecto se basará en la proyección de la demanda interna aparente calculada en la tabla 2.5, a la cual se aplicará factores para hallar la demanda específica del proyecto.
Según un estudio realizado por APEIM, indica que el total de habitantes de Lima Metropolitana asciende a 10,012,437.

Se aplica un factor de 68.9% dado a que representa los sectores socio-económicos (A, B y C) de Lima Metropolitana a los cuales está dirigido el producto.

Se determinó que las personas del sector socioeconómico A, eran aquellas que realizaban sus compras en los supermercados de: La Planicie (Wong), Raúl Ferrero (Wong y Plaza Vea) y San Isidro (Wong y Vivanda).

Para el sector socioeconómico B y C, se encuestó en los supermercados de los siguientes distritos: San Borja, Miraflores, Surco, Jesús María, San Miguel y Pueblo Libre.

Según Simeon Pickers, determinar el tamaño de la muestra es un paso importante en cualquier estudio de investigación de mercados, por ende se realizó una encuesta a 400 personas, ya que el “n” muestral arrojó un resultado de 384 encuestas. El número de encuestados fue calculado con la siguiente fórmula, según la figura 2.4.

Figura 2.4
Cálculo del tamaño de la muestra

<table>
<thead>
<tr>
<th>Cálculo del tamaño de la muestra conociendo el tamaño de la población</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamaño de la población</td>
</tr>
<tr>
<td>Nivel de confianza</td>
</tr>
<tr>
<td>Error máximo admisible</td>
</tr>
<tr>
<td>Probabilidad de éxito</td>
</tr>
<tr>
<td>Probabilidad de fracaso</td>
</tr>
<tr>
<td>n = (\frac{N \times Z^2 \times p \times q}{d^2 \times (N-1) + Z^2 \times p \times q})</td>
</tr>
<tr>
<td>n muestral = 384.14</td>
</tr>
</tbody>
</table>

Según los resultados de la encuesta (ver Anexo 1), el 66.75% de los encuestados estaría dispuesto a comprar conserva de mango en almíbar, siendo ésta la intención de compra por parte del mercado meta.

El 38.75% de encuestados, prefiere la presentación del producto en frascos de 750 gramos, siendo ésta la intensidad de compra por parte del público objetivo.

También se está considerando un factor de 76%, que es la frecuencia de compra del producto, donde según los resultados de la encuesta, éste sería adquirido al menos
una vez al mes.

Para validar la confiabilidad de la encuesta realizada, se ha determinado calcular el Alfa de Cronbach, tal y como señalan Huh, Delorme y Reid (2006), el coeficiente debe ser igual o mayor a 0.6, para que los valores detectados sean aceptables. Éste cálculo se explica en el Anexo 1.

Se ha utilizado una guía de aproximaciones de participación de mercado expresada en la siguiente tabla 2.9, siendo la elección final la opción 5, dado que los pocos competidores en el mercado son empresas ya constituidas, las cuales tienen diferentes productos en conserva.

Adiciona a ello, la empresa Ecosac Agrícola S.A.C tiene una participación de mercado de 3.52%, siendo ésta la mínima dentro del sector de conserva de mango; por ende, se ha determinado que la participación de mercado del presente proyecto sea de 4%.

Tabla 2.9

Guía de aproximaciones de participación de mercado

<table>
<thead>
<tr>
<th>Opción</th>
<th>¿Qué tan grande son sus competidores?</th>
<th>¿Qué tantos competidores tiene?</th>
<th>¿Qué tan similares son sus productos a los suyos?</th>
<th>¿Cuál parece ser su porcentaje?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Grandes</td>
<td>Muchos</td>
<td>Similares</td>
<td>0% - 0,5%</td>
</tr>
<tr>
<td>2</td>
<td>Grandes</td>
<td>Algunos</td>
<td>Similares</td>
<td>0% - 0,5%</td>
</tr>
<tr>
<td>3</td>
<td>Grandes</td>
<td>Uno</td>
<td>Similares</td>
<td>0,5% - 5%</td>
</tr>
<tr>
<td>4</td>
<td>Grandes</td>
<td>Muchos</td>
<td>Diferentes</td>
<td>0,5% - 5%</td>
</tr>
<tr>
<td>5</td>
<td>Grandes</td>
<td>Algunos</td>
<td>Diferentes</td>
<td>0,5% - 5%</td>
</tr>
<tr>
<td>6</td>
<td>Grandes</td>
<td>Uno</td>
<td>Diferentes</td>
<td>10% - 15%</td>
</tr>
<tr>
<td>7</td>
<td>Pequeños</td>
<td>Muchos</td>
<td>Similares</td>
<td>5% - 10%</td>
</tr>
<tr>
<td>8</td>
<td>Pequeños</td>
<td>Algunos</td>
<td>Similares</td>
<td>10% - 15%</td>
</tr>
<tr>
<td>9</td>
<td>Pequeños</td>
<td>Muchos</td>
<td>Diferentes</td>
<td>10% - 15%</td>
</tr>
<tr>
<td>10</td>
<td>Pequeños</td>
<td>Algunos</td>
<td>Diferentes</td>
<td>20% - 30%</td>
</tr>
<tr>
<td>11</td>
<td>Pequeños</td>
<td>Uno</td>
<td>Similares</td>
<td>30% - 50%</td>
</tr>
<tr>
<td>12</td>
<td>Pequeños</td>
<td>Uno</td>
<td>Diferentes</td>
<td>40% - 80%</td>
</tr>
<tr>
<td>13</td>
<td>Sin competencia</td>
<td>Sin competencia</td>
<td>Sin competencia</td>
<td>80% - 100%</td>
</tr>
</tbody>
</table>

Elaboración propia

A continuación, en la tabla 2.10, se muestra la demanda específica para el proyecto del período 2017-2021, considerando los factores expuestos anteriormente.
Demanda específica para el proyecto en toneladas para el período 2017-2021

<table>
<thead>
<tr>
<th>Año</th>
<th>DIA Proyectada</th>
<th>% Segmentación socioeconómica de sectores A, B y C (68.9%)</th>
<th>Intención de compra (66.75%)</th>
<th>Intensidad de compra (38.75%)</th>
<th>Frecuencia de compra (76%)</th>
<th>Demanda Objetivo</th>
<th>Participación de mercado (4%)</th>
<th>Demanda del proyecto</th>
<th>Frascos de conserva de mango</th>
<th>Caja de 10 unidades (frascos con 0.75 kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>11,727.55</td>
<td>8,080.28</td>
<td>5,393.59</td>
<td>2,090.01</td>
<td>1,588.41</td>
<td>1,588.41</td>
<td>63.54</td>
<td>63.54</td>
<td>146,061</td>
<td>14,606</td>
</tr>
<tr>
<td>2018</td>
<td>13,317.41</td>
<td>9,175.69</td>
<td>6,124.78</td>
<td>2,373.35</td>
<td>1,803.75</td>
<td>1,803.75</td>
<td>72.15</td>
<td>72.15</td>
<td>165,862</td>
<td>16,586</td>
</tr>
<tr>
<td>2019</td>
<td>14,907.27</td>
<td>10,271.11</td>
<td>6,855.96</td>
<td>2,656.69</td>
<td>2,019.08</td>
<td>2,019.08</td>
<td>80.76</td>
<td>80.76</td>
<td>185,663</td>
<td>18,566</td>
</tr>
<tr>
<td>2020</td>
<td>16,497.13</td>
<td>11,366.52</td>
<td>7,587.15</td>
<td>2,940.02</td>
<td>2,234.42</td>
<td>2,234.42</td>
<td>89.38</td>
<td>89.38</td>
<td>205,464</td>
<td>20,546</td>
</tr>
<tr>
<td>2021</td>
<td>18,086.99</td>
<td>12,461.94</td>
<td>8,318.34</td>
<td>3,223.36</td>
<td>2,449.75</td>
<td>2,449.75</td>
<td>97.99</td>
<td>97.99</td>
<td>223,265</td>
<td>22,526</td>
</tr>
</tbody>
</table>

Elaboración propia
2.5. Definición de la estrategia de comercialización

2.5.1. Políticas de comercialización y distribución

La empresa buscará mantener una cercana relación con los dos niveles de la cadena de suministros: el nivel superior, compuesto por los proveedores y fuentes de financiamiento; y en el nivel inferior, formando una conexión vital con los clientes.

Los clientes realizan sus compras de conserva de mango en almíbar en supermercados y tiendas gourmet según la encuesta realizada (ver Anexo 1).

El canal de distribución a utilizar es indirecto, ya que entre los productores y clientes finales se cuenta con un intermediario, que sería el supermercado o tiendas gourmet.

Para que el nuevo producto tenga una mayor aceptación en el mercado, se ofrecerán descuentos por introducción, con la finalidad de asegurar una compra regular y luego se realizarán descuentos por volumen. Según las preferencias expuestas en la encuesta, el mercado objetivo prefiere realizar su compra en supermercados y tiendas gourmet, por ende éstos serán nuestros principales canales de distribución (Wong, Vivanda, Plaza Vea, Metro, Casa Verde, Adrimpex, etc.)

2.5.2. Publicidad y promoción

La empresa buscará realizar una agresiva campaña publicitaria para penetrar en el mercado y así posicionarse de manera óptima, ya que el producto en estudio (conserva de mango en almíbar), compite directamente con las conservas, jugos y pulpas de otras frutas. Para lograr este objetivo se utilizará principalmente el merchandising en supermercados, en los cuales se presentará al público mediante la degustación.

Esto se logrará con el apoyo de degustaciones y paneles publicitarios en avenidas principales, cerca de supermercados en donde puedan adquirir el producto.

De la misma manera, el producto se presentará en ferias para que el público lo conozca, ya que la gente que asiste a estas ferias, por lo general están dispuestas a probar nuevos productos y sabores, lo cual nos garantiza un mayor volumen de personas probando la conserva de mango.
Se utilizará un mensaje publicitario enfocado en “el buen mango (mangood)”. Se tendrá cuidado en la presentación y servicio de primera calidad buscando causar una buena impresión.

Se puede concluir que la empresa se enfocará en una estrategia de atracción (estrategia pull) donde el productor dirige toda la estrategia de marketing al consumidor, quien demandará el producto.

2.5.3. **Análisis de precios**

2.5.3.1. **Tendencia histórica de los precios**

Al ser un producto escaso que se vende en supermercados y tiendas gourmet, no existe una tendencia histórica de precios. Sin embargo, se considerará el precio actual de la competencia.

2.5.3.2. **Precios actuales**

Según información obtenida de la página del Supermercado Wong, el precio de conserva de mango en almíbar en frasco de vidrio (450 gramos) de la empresa Valle Fértil, es de S/. 11.50 según la figura 2.4, mientras que en la cadena de supermercados Metro, el precio del mismo es de S/. 11.30 según la figura 2.5.

Figura 2.5
Precio actual de conserva de mango en supermercado Wong

Nota: Precio de conserva de la marca Valle Fértil en Supermercados Wong
2.6. **Análisis de disponibilidad de los insumos principales**

2.6.1. **Características principales de la materia prima**

El mango crece en una gran diversidad de suelos con un pH entre los 5.5 y 8.0. La planta de mango no tolera las sales solubles en una temprana edad donde su susceptibilidad es muy alta.

Las plantaciones de mango no están donde la temperatura llega a menos de 15 grados o en terrenos sobre los 600 m.s.n.m. Se requiere riego ligero y frecuente cuando se encuentran en zonas sin precipitaciones.

El mango es un fruto proveniente del sudeste asiático rico en calcio, magnesio, potasio, fosforo, vitamina A, vitamina C y ciertos aminoácidos.

Además se ha demostrado recientemente que 1 mango entero o fresco-cortado al día por un espacio de 30 días puede reducir en un 37-38% el nivel de triglicéridos. (Wall et al., 2015).

La tabla 2.11 nos brinda la información nutricional de 100 g de pulpa de mango.
Tabla 2.11

Composición química del mango para 100 gramos de pulpa

<table>
<thead>
<tr>
<th>Componente</th>
<th>Peso</th>
<th>Unidad</th>
<th>Componente</th>
<th>Peso</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agua</td>
<td>83</td>
<td>g</td>
<td>Cobre</td>
<td>0,11</td>
<td>mg</td>
</tr>
<tr>
<td>Energía</td>
<td>65</td>
<td>Kcal</td>
<td>Zinc</td>
<td>0,04</td>
<td>mg</td>
</tr>
<tr>
<td>Grasas</td>
<td>0,30</td>
<td>g</td>
<td>Selenio</td>
<td>0,6</td>
<td>mg</td>
</tr>
<tr>
<td>Proteína</td>
<td>0,70</td>
<td>g</td>
<td>Calcio</td>
<td>17,6</td>
<td>mg</td>
</tr>
<tr>
<td>Hidratos carbono</td>
<td>17</td>
<td>g</td>
<td>Carbohidrato</td>
<td>13,9</td>
<td>g</td>
</tr>
<tr>
<td>Fibra</td>
<td>1,8</td>
<td>g</td>
<td>Vitamina C</td>
<td>27,7</td>
<td>mg</td>
</tr>
<tr>
<td>Potasio</td>
<td>156</td>
<td>mg</td>
<td>Vitamina A IU</td>
<td>3,894</td>
<td>mg</td>
</tr>
<tr>
<td>Sodio</td>
<td>25,2</td>
<td>mg</td>
<td>Vitamina (B6) Piridoxina</td>
<td>0,134</td>
<td>mg</td>
</tr>
<tr>
<td>Magnesio</td>
<td>9</td>
<td>mg</td>
<td>Vitamina E</td>
<td>0,1</td>
<td>mg</td>
</tr>
<tr>
<td>Fósforo</td>
<td>11</td>
<td>mg</td>
<td>Ácido fólico</td>
<td>14</td>
<td>mg</td>
</tr>
</tbody>
</table>

Fuente: Via Néctare. (2011)
Elaboración propia

2.6.2. Disponibilidad de la materia prima

Según un estudio realizado por Perú Compendio Estadístico 2015, Piura es la ciudad con mayor producción de mango, teniendo una participación de producción del 74%. El departamento de Lima está dentro de los 5 mayores productores de mango a nivel nacional, esto equivale a 9,100 toneladas en el año 2015. En la tabla 2.12 se muestra la producción nacional de mango desde el año 2004 al 2015.

Un estudio realizado por la Asociación de Productores y Exportadores de Mango (APEM, 2011) concluyó que del total de la producción en todas las variedades de mango, el 68% se dirige a la exportación y el 32% al consumo interno. De éste último, el 47% es de la variedad Kent.

Debido a la estacionalidad que presenta el mango, la cual va de octubre a marzo, se ha considerado que durante los 6 meses que no existe cosecha de mango en Perú de abril a septiembre, se importará del país de México, según el período de cosecha descrito en la figura 2.7.
Figura 2.7
Calendario de cosecha de mango del mercado internacional

<table>
<thead>
<tr>
<th>HEMISFERIO NORTE</th>
<th>ENE</th>
<th>FEB</th>
<th>MAR</th>
<th>ABR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AGO</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDI A</td>
<td>PERIODO APROVECHADO POR PERÚ</td>
<td></td>
</tr>
<tr>
<td>PAQUÍSTAN</td>
<td>PERIODO APROVECHADO POR PERÚ</td>
<td></td>
</tr>
<tr>
<td>MÉXICO</td>
<td></td>
</tr>
<tr>
<td>INDONESIA</td>
<td></td>
</tr>
<tr>
<td>FILIPINAS</td>
<td></td>
</tr>
<tr>
<td>EU. (PUERTO RICO)</td>
<td></td>
</tr>
<tr>
<td>COSTA RICA</td>
<td></td>
</tr>
<tr>
<td>COSTA DE MARFIL</td>
<td></td>
</tr>
<tr>
<td>ISRAEL</td>
<td></td>
</tr>
<tr>
<td>HEMISFERIO SUR</td>
<td>ENE</td>
<td>FEB</td>
<td>MAR</td>
<td>ABR</td>
<td>MAY</td>
<td>JUN</td>
<td>JUL</td>
<td>AGO</td>
<td>SEP</td>
<td>OCT</td>
<td>NOV</td>
<td>DIC</td>
</tr>
<tr>
<td>BRASIL</td>
<td>PERIODO APROVECHADO POR PERÚ</td>
<td></td>
</tr>
<tr>
<td>ECUADOR</td>
<td></td>
</tr>
</tbody>
</table>

| Tabla 2.12 |
| Producción anual de mango en el Perú (toneladas) |

<table>
<thead>
<tr>
<th>Año</th>
<th>Producción mango (t)</th>
<th>Mercado nacional (32%)</th>
<th>Disponibilidad variedad Kent (47%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>277,899.00</td>
<td>88,927.68</td>
<td>41,796.01</td>
</tr>
<tr>
<td>2005</td>
<td>235,406.00</td>
<td>75,329.92</td>
<td>35,405.06</td>
</tr>
<tr>
<td>2006</td>
<td>320,267.00</td>
<td>102,485.44</td>
<td>48,168.16</td>
</tr>
<tr>
<td>2007</td>
<td>294,440.00</td>
<td>94,220.80</td>
<td>44,283.78</td>
</tr>
<tr>
<td>2008</td>
<td>322,721.00</td>
<td>103,270.72</td>
<td>48,537.24</td>
</tr>
<tr>
<td>2009</td>
<td>237,384.00</td>
<td>75,962.88</td>
<td>35,702.55</td>
</tr>
<tr>
<td>2010</td>
<td>167,008.00</td>
<td>53,442.56</td>
<td>25,118.00</td>
</tr>
<tr>
<td>2011</td>
<td>351,709.00</td>
<td>112,546.88</td>
<td>52,897.03</td>
</tr>
<tr>
<td>2012</td>
<td>184,533.00</td>
<td>59,050.56</td>
<td>27,753.76</td>
</tr>
<tr>
<td>2013</td>
<td>457,189.00</td>
<td>146,300.48</td>
<td>68,761.23</td>
</tr>
<tr>
<td>2014</td>
<td>377,251.00</td>
<td>120,720.32</td>
<td>56,738.55</td>
</tr>
<tr>
<td>2015</td>
<td>464,707.00</td>
<td>148,706.24</td>
<td>69,891.93</td>
</tr>
</tbody>
</table>

Elaboración propia

2.6.3. Costos de materia prima

La comercialización de mango se realiza mayormente en chacra y mercados mayoristas al consumidor.
La adquisición de la materia prima será a través de la compra a los mayoristas, debido a que ellos se encargan de la comercialización diaria de frutas en grandes cantidades, por lo que asegura la disponibilidad de la misma dado a que muchos de ellos son acopiadores a nivel nacional. Además, una investigación realizada por María Gutiérrez, concluyó que los mangos vendidos en mercados y supermercados de la ciudad de Lima, cumplen con el criterio microbiológico exigido por el Ministerio de Salud del Perú para la categoría XIV. 1 Frutas y hortalizas frescas (sin ningún tratamiento), según la R.M N° 591-2008/ MINSA.

La tabla 2.13 muestra los precios en chacra del mango durante el período 2005-2015.

Con respecto al precio en los mercados mayoristas, sólo se encontró datos de los años 2015 y 2016.

Tabla 2.13
Precios en chacra de mango al año 2015

<table>
<thead>
<tr>
<th>Año</th>
<th>Precio promedio en chacra (Nuevos soles/t)</th>
<th>Precio mercado mayorista (Nuevos soles/t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>490</td>
<td>-</td>
</tr>
<tr>
<td>2006</td>
<td>610</td>
<td>-</td>
</tr>
<tr>
<td>2007</td>
<td>540</td>
<td>-</td>
</tr>
<tr>
<td>2008</td>
<td>430</td>
<td>-</td>
</tr>
<tr>
<td>2009</td>
<td>860</td>
<td>-</td>
</tr>
<tr>
<td>2010</td>
<td>440</td>
<td>-</td>
</tr>
<tr>
<td>2011</td>
<td>460</td>
<td>-</td>
</tr>
<tr>
<td>2012</td>
<td>900</td>
<td>-</td>
</tr>
<tr>
<td>2013</td>
<td>800</td>
<td>-</td>
</tr>
<tr>
<td>2014</td>
<td>541</td>
<td>-</td>
</tr>
<tr>
<td>2015</td>
<td>1,072</td>
<td>1,447</td>
</tr>
<tr>
<td>2016</td>
<td>864</td>
<td>1,166</td>
</tr>
</tbody>
</table>

Elaboración propia

Debido a la estacionalidad que presenta el mango, la cual va de octubre a marzo, se ha considerado que durante los 6 meses que no existe cosecha de mango en Perú de abril a setiembre, se importará del país de México.

Se ha recibido una cotización del precio de importación CIF de mango de la variedad Kent del país de México, la cual muestra que el kilogramo de mango tiene un costo de 2.05 soles por kilogramo (ver Anexo 2).
CAPÍTULO III: LOCALIZACIÓN DE PLANTA

La localización de planta es un factor que debe analizarse adecuadamente ya que determinará gran parte del éxito económica de la empresa puesto que los costos unitarios de operación se reducirían y existirá un mayor beneficio para el proyecto.

El estudio de localización de planta tiene como objetivo una mayor rentabilidad en las operaciones respecto a los objetivos sociales o económicos de la empresa

Existen diversos factores como el social, tecnológico, económico y de mercado para la instalación de una planta industrial. (Ingrid Cortabarria, 2013, párr.4).

La localización está muy relacionado a la importancia de elaborar el producto cerca del mercado donde será distribuido, ya que con ello el tiempo de entrega y costos de despacho se reducirán. Además debe ubicarse cerca de la fuente apropiada de mano de obra para aprovechar los bajos costos laborales y las destrezas técnicas.

3.1. Identificación y análisis detallado de los factores de localización

Elegir una buena ubicación minimiza tres tipos de costos: los regionales, que están relacionados con la localidad e incluyen terreno, construcción, personal, impuestos y costo de energía; los relativos a la distribución de salidas, los cuales son el envío de productos a vendedores minoristas o mayoristas, y a otras plantas de la cadena productiva. Finalmente el costo referido a la distribución de entradas, el cual comprende la disponibilidad y costo de las materias primas y de los suministros, así como el tiempo necesario para adquirir estos insumos.” (Díaz, Jarufe y Noriega, 2007, p.40).

A continuación se detallarán los factores de localización más relevantes para el estudio abordado.

- Cercanía al mercado (F1)

La ciudad con mayor producción de mango es Piura con una participación del 74%. El departamento de Lima está dentro de los 5 mayores productores de mango a nivel nacional con 9,100 toneladas en el año 2015.
La disponibilidad de materia prima, es considerada el factor más importante para determinar el área geográfica de estudio y la localización de la planta, la cual está estrechamente ligada con la cercanía a las áreas de producción.

Se considerará como posibles ubicaciones a las ciudades que tengan una alta producción y rendimiento del mango.

Por ello se tomará como posibles ubicaciones las ciudades de Lima, Piura y Lambayeque que se encuentran dentro de los mayores productores de mango a nivel nacional.

En la tabla 3.1 se puede apreciar la distancia aproximada que se necesita recorrer desde el mercado mayorista donde se adquiere el mango hasta el mercado al cual está dirigido el proyecto.

Tabla 3.1:
Distancia en kilómetros desde la chacra a las posibles ubicaciones de planta

<table>
<thead>
<tr>
<th>Ubicación</th>
<th>Distancia en Km desde chacra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lima</td>
<td>0</td>
</tr>
<tr>
<td>Lambayeque</td>
<td>791</td>
</tr>
<tr>
<td>Piura</td>
<td>1050</td>
</tr>
</tbody>
</table>

Elaboración propia

- **Requerimientos de Infraestructura Industrial (F2)**

Las zonas anteriormente indicadas (Piura, Lambayeque y Lima) cuentan con un área destinada al sector industrial con mucho potencial de crecimiento. Asimismo, cuentan con el suministro de energía eléctrica y agua, recursos necesarios para el funcionamiento del proyecto.

Los servicios de construcción de la planta se tercerizarán. También se capacitará al personal de la planta para que conozca el funcionamiento de las máquinas y si se presentara algún inconveniente, la misma empresa de la cual se adquirió la maquinaria deberá dar el mantenimiento adecuado. Por lo tanto, ningún departamento presenta problemas para la construcción, montaje y mantenimiento de equipos.
• **Condiciones socio-económicas (F3)**

Para invertir en un país se debe conocer la situación económica del mismo. Esto se llega a determinar mediante el índice de pobreza y el Producto Bruto Interno (PBI), que se define como el valor total de los bienes y servicios producidos en un país durante un periodo determinado.

El Instituto Nacional de Estadística e Informática (INEI) informó que en el año 2014, la pobreza se estima en 22,7%, habiéndose reducido en 1,2 puntos porcentuales respecto al 2013, es decir, más de un cuarto de millón de personas dejaron de ser pobres (289 mil). En el año 2014, el ingreso promedio per cápita mensual de los más pobres aumentó en 2,2%.

El PBI solo crecería 2.1% en el 2015 como se muestra en la figura 3.1, según proyecciones del Bank of América Merrill Lynch. Esta cifra representaría la menor tasa de expansión de la economía desde el 2010.

Figura 3.1

Evolución del PBI del Perú desde el año 1995 al 2015

Fuente: Banco Central de Reserva del Perú (2015)

• **Disponibilidad de mano de obra calificada (F4)**

Otro factor clave al momento de elegir el lugar de ubicación de la planta será la disponibilidad de mano de obra y su nivel de capacitación. Por ello se presenta la siguiente tabla 3.2, la cual muestra cifras sobre el nivel educativo de cada zona, según un estudio realizado por INEI. Otro de los detalles a tomar en cuenta son los salarios que la población estaría dispuesta a percibir, por ello en
la tabla 3.3 podemos apreciar los salarios en el mercado del personal que se necesitará en la empresa.

Tabla 3.2
Nivel de educación de la población de 15 y más años de edad, según área de residencia, 2011 – 2014

<table>
<thead>
<tr>
<th>Nivel de educación / Área de residencia</th>
<th>2011</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sin nivel inicial</td>
<td>43</td>
<td>45</td>
</tr>
<tr>
<td>Primaria</td>
<td>28</td>
<td>29</td>
</tr>
<tr>
<td>Secundaria</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>Superior 1º</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>Urbana</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sin nivel inicial</td>
<td>2.8</td>
<td>2.6</td>
</tr>
<tr>
<td>Primaria</td>
<td>16.5</td>
<td>21.9</td>
</tr>
<tr>
<td>Secundaria</td>
<td>46.2</td>
<td>46.3</td>
</tr>
<tr>
<td>Superior 1º</td>
<td>35.4</td>
<td>35.2</td>
</tr>
<tr>
<td>Rural</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sin nivel inicial</td>
<td>11.5</td>
<td>10.6</td>
</tr>
<tr>
<td>Primaria</td>
<td>43.7</td>
<td>43.0</td>
</tr>
<tr>
<td>Secundaria</td>
<td>37.3</td>
<td>37.6</td>
</tr>
<tr>
<td>Superior 1º</td>
<td>7.5</td>
<td>8.8</td>
</tr>
</tbody>
</table>

Fuente: Instituto Nacional de Estadística e Informática, INEI. (2015)
Elaboración propia

Tabla 3.3
Salarios mensuales de trabajadores según el puesto de trabajo en soles

<table>
<thead>
<tr>
<th>Puesto de trabajo</th>
<th>Lima</th>
<th>Lambayeque</th>
<th>Piura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervisor</td>
<td>3,500-4,500</td>
<td>2,800-3,500</td>
<td>2,800-3,500</td>
</tr>
<tr>
<td>Técnicos y Operario de máquinas</td>
<td>1,000-1,200</td>
<td>950-1,150</td>
<td>950-1,150</td>
</tr>
<tr>
<td>Contador</td>
<td>1,500-2,000</td>
<td>1,200-1,500</td>
<td>1,200-1,500</td>
</tr>
<tr>
<td>Secretaria</td>
<td>1,200-1,500</td>
<td>1,000-1,300</td>
<td>900-1,100</td>
</tr>
<tr>
<td>Operario de limpieza</td>
<td>940</td>
<td>940</td>
<td>940</td>
</tr>
<tr>
<td>Operario de seguridad</td>
<td>1,000-1,400</td>
<td>1,000-1,200</td>
<td>1,000-1,200</td>
</tr>
</tbody>
</table>

Fuente: Computrabajo. (2016)
Elaboración propia

• Clima (F5)

La temperatura anual de los departamentos de Piura y Lambayeque se mantiene aproximadamente entre 23 y 25 ºC. Así mismo en el departamento de Lima la temperatura oscila entre los 14 ºC en invierno llegando a 30 ºC en verano. Para fines de localización de la planta el clima no es un factor muy determinante.
Suministro de agua (F6)

Este servicio es importante para el funcionamiento de la planta: acondicionamiento de la materia prima, limpieza, entre otras. El suministro de agua debe ser permanente y potable. En los tres departamentos (Lima, Piura, Lambayeque) se cuenta con buen abastecimiento de agua. En las tablas 3.4, 3.5, y 3.6 se muestran las tarifas por rango para el cálculo de agua potable según departamentos.

Tabla 3.4
Costo de servicio agua potable – Lima

<table>
<thead>
<tr>
<th>Categoría</th>
<th>Rangos de Consumo m3/mes</th>
<th>Tarifas S/.m3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comercial</td>
<td>0 - 1000</td>
<td>4.86</td>
</tr>
<tr>
<td></td>
<td>1000 a más</td>
<td>5.21</td>
</tr>
<tr>
<td>Industrial</td>
<td>0 - 1000</td>
<td>4.86</td>
</tr>
<tr>
<td></td>
<td>1000 a más</td>
<td>5.21</td>
</tr>
</tbody>
</table>

Fuente: Superintendencia Nacional de Servicios de Saneamiento, SEDAPAL. (2016)
Elaboración propia

Tabla 3.5
Costo de servicio agua potable – Piura

<table>
<thead>
<tr>
<th>Categoría</th>
<th>Rangos de Consumo m3/mes</th>
<th>Tarifas S/.m3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comercial</td>
<td>0 a 50</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>50 a 150</td>
<td>3.843</td>
</tr>
<tr>
<td></td>
<td>150 a más</td>
<td>5.871</td>
</tr>
<tr>
<td>Industrial</td>
<td>0 a 50</td>
<td>3.556</td>
</tr>
<tr>
<td></td>
<td>50 a 150</td>
<td>4.269</td>
</tr>
<tr>
<td></td>
<td>150 a más</td>
<td>5.871</td>
</tr>
</tbody>
</table>

Fuente: Superintendencia Nacional de Servicios de Saneamiento, EPSGRAU. (2016)
Elaboración propia

Tabla 3.6
Costo de servicio agua potable - Lambayeque

<table>
<thead>
<tr>
<th>Categoría</th>
<th>Rangos de Consumo m3/mes</th>
<th>Tarifas S/.m3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comercial</td>
<td>0 a 35</td>
<td>1.962</td>
</tr>
<tr>
<td></td>
<td>36 a más</td>
<td>3.51</td>
</tr>
<tr>
<td>Industrial</td>
<td>0 a más</td>
<td>7.052</td>
</tr>
</tbody>
</table>

Fuente: Superintendencia Nacional de Servicios de Saneamiento, EPSEL. (2016)
Elaboración propia
• **Energía eléctrica (F7)**

El suministro de energía es importante para el funcionamiento de las máquinas, equipos e iluminación de la planta. Los departamentos de Piura, Lima y Lambayeque por tener una considerable zona urbana, presentan una buena distribución de las redes de energía eléctrica.

Es importante considerar el precio que se paga por la energía siendo el departamento de Lima es el de mayor tarifa, además es el que cuenta con un mayor suministro. En la siguiente tabla 3.7 se observa las tarifas de energía en los departamentos que van a ser evaluados.

<table>
<thead>
<tr>
<th>Servicio</th>
<th>Unidad</th>
<th>Piura</th>
<th>Lima</th>
<th>Lambayeque</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cargo Fijo Mensual</td>
<td>S/./mes</td>
<td>6.33</td>
<td>3.86</td>
<td>6.33</td>
</tr>
<tr>
<td>Cargo por Energía Activa en Punta</td>
<td>ctm. S./kW.h</td>
<td>20.6</td>
<td>19.82</td>
<td>21.12</td>
</tr>
<tr>
<td>Cargo por Energía Activa Fuera de Punta</td>
<td>ctm. S./kW.h</td>
<td>17.18</td>
<td>16.52</td>
<td>17.8</td>
</tr>
<tr>
<td>Cargo por Potencia Activa de Generación en HP</td>
<td>S./kW-mes</td>
<td>42.82</td>
<td>41.83</td>
<td>43.12</td>
</tr>
<tr>
<td>Cargo por Potencia Activa de Distribución en HP</td>
<td>S./kW-mes</td>
<td>11.38</td>
<td>9.3</td>
<td>11.43</td>
</tr>
<tr>
<td>Cargo por Exceso de Potencia Activa de Distribución en HFP</td>
<td>S./kW-mes</td>
<td>15.25</td>
<td>10.21</td>
<td>11.65</td>
</tr>
<tr>
<td>Cargo por Energía Reactiva que exceda el 30% del total de la Energía Activa</td>
<td>ctm. S./kW.h</td>
<td>4.01</td>
<td>4.01</td>
<td>4.01</td>
</tr>
</tbody>
</table>

Fuente: Organismo Supervisor de la Inversión en Energía y Minería. (2016)
Elaboración propia

• **Terrenos (F8)**

En la siguiente tabla 3.8, se puede apreciar el costo del metro cuadrado para la obtención del terreno en donde se encontraría localizada la planta.

<table>
<thead>
<tr>
<th>Localización</th>
<th>Costo(US$/m2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piura</td>
<td>70-120</td>
</tr>
<tr>
<td>Lima</td>
<td>185-700</td>
</tr>
<tr>
<td>Lambayeque</td>
<td>90-170</td>
</tr>
</tbody>
</table>

Fuente: OLX. (2016)
Elaboración propia
• **Servicios de transporte (F9)**

Debido a que actualmente en el país las vías de comunicación se han vuelto un factor importante para el desarrollo comercial, se cuenta con medios de transporte para que el trayecto del producto sea más eficiente, minimizando el tiempo de llegada a destino. La vía de comunicación más importante, por ser la más utilizada, será la terrestre.

• **Seguridad (F10)**

Para la ubicación de la planta, se debe tener en cuenta aspecto como los índices de robo, accidentes, etc.

Según un estudio realizado por Instituto Nacional de Estadística e Informática, los tipos de faltas están clasificados por: contra el patrimonio, contra la seguridad pública, contra las buenas costumbres, contra la tranquilidad pública y contra la persona. En la tabla 3.9, se detallan los casos registrados de faltas por departamento durante el período 2006-2014.

Tabla 3.9

<table>
<thead>
<tr>
<th>Departamento</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>232</td>
<td>504</td>
<td>210</td>
<td>241</td>
<td>212</td>
<td>035</td>
<td>215</td>
<td>865</td>
<td></td>
</tr>
<tr>
<td>Lambayeque</td>
<td>11</td>
<td>233</td>
<td>14</td>
<td>008</td>
<td>16</td>
<td>410</td>
<td>13</td>
<td>364</td>
<td></td>
</tr>
<tr>
<td>Lima</td>
<td>118</td>
<td>492</td>
<td>99</td>
<td>128</td>
<td>92</td>
<td>534</td>
<td>59</td>
<td>660</td>
<td>81</td>
</tr>
<tr>
<td>Piura</td>
<td>6</td>
<td>709</td>
<td>6</td>
<td>524</td>
<td>5</td>
<td>226</td>
<td>4</td>
<td>968</td>
<td>11</td>
</tr>
</tbody>
</table>

Elaboración propia

3.2. **Identificación y descripción de las alternativas de localización**

El mercado objetivo para la comercialización de conserva de mango en almíbar es la ciudad de Lima, como se ha explicado anteriormente las alternativas de localización deben estar estrechamente ligadas a la cercanía de la materia prima, así como la cercanía al mercado objetivo.

Se deben tomar consideraciones con el transporte de materias primas y productos terminados, ya que también son importantes la capacidad de carga, la
seguridad de la mercancía, el tiempo de entrega, etc.

En cuanto a los requerimientos de infraestructura industrial y condiciones socio-económicas; el factor humano es uno de los factores más importantes, aunque dicho aspecto esté perdiendo peso en entornos productivos tecnológicamente desarrollados.

De acuerdo con Barquero: “un alto nivel de productividad depende del grado de formación y preparación del personal. Tener un personal capacitado influye en la rentabilidad del negocio, y en caso el personal sea ineficiente, la empresa sufrirá un estancamiento sin poder competir adecuadamente en el mercado”. (Alfredo Barquero, 2005, párr.5)

Por ello, la zona norte (Piura y Lambayeque), poseen ventaja sobre cualquier otra región, dado que poseen mayor experiencia y especialización en temas de cultivo, particularmente del mango. Se considera también a la ciudad de Lima, debido a que hay técnicos y profesionales mejor preparados para procesos industriales. Lo común de estas tres ciudades es que cuentan con un suministro suficiente de energía eléctrica y agua, recursos necesarios para la puesta en operación del proyecto.

3.3. Evaluación y selección de localización

3.3.1. Evaluación y selección de la macro localización

El método de Ranking de Factores es usado para determinar la localización de la planta, el cual pondera los factores de localización de planta, tales como mercado, materias primas, mano de obra, transporte, servicios, energía, y otros. (Díaz, Jarufe y Noriega, 2007, p.40).

En la siguiente tabla 3.10 se muestra la matriz de enfrentamiento de factores para hallar la ponderación final. Además en la tabla 3.11 se muestra la escala de calificación de las alternativas. Finalmente, en la tabla 3.12 se plasmará por el método de ponderación de factores, la localización de la planta.
Tabla 3.10
Tabla de enfrentamiento de factores de macro localización

<table>
<thead>
<tr>
<th>Factor</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>Conteo</th>
<th>Ponderación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cercanía al mercado (1)</td>
<td>1</td>
<td>9</td>
<td>14.75%</td>
</tr>
<tr>
<td>Infraestructura Industrial (2)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>11.48%</td>
</tr>
<tr>
<td>Cond. socio económicas (3)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>13.11%</td>
</tr>
<tr>
<td>Disp. de mano de obra calificada (4)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>11.48%</td>
</tr>
<tr>
<td>Clima (5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3.28%</td>
</tr>
<tr>
<td>Suministros de agua (6)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>8.20%</td>
</tr>
<tr>
<td>Energía eléctrica (7)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>6.56%</td>
</tr>
<tr>
<td>Terrenos (8)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>11.48%</td>
</tr>
<tr>
<td>Servicios de transporte (9)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>11.48%</td>
</tr>
<tr>
<td>Seguridad (10)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>8.20%</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>61</td>
<td>100%</td>
</tr>
</tbody>
</table>

Elaboración propia

Tabla 3.11
Escala de calificación de alternativas

<table>
<thead>
<tr>
<th>Alternativa</th>
<th>Puntuación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excelente</td>
<td>10</td>
</tr>
<tr>
<td>Muy Bueno</td>
<td>8</td>
</tr>
<tr>
<td>Bueno</td>
<td>6</td>
</tr>
<tr>
<td>Regular</td>
<td>4</td>
</tr>
<tr>
<td>Deficiente</td>
<td>2</td>
</tr>
</tbody>
</table>

Elaboración propia
Tabla 3.12
Macro localización de la planta

<table>
<thead>
<tr>
<th>Factores de Localización</th>
<th>Ponderac. (%)</th>
<th>Piura</th>
<th>Puntuac.</th>
<th>Lambayeque</th>
<th>Puntuac.</th>
<th>Lima</th>
<th>Puntuac.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cercanía al mercado (1)</td>
<td>14.75%</td>
<td>4</td>
<td>0.59</td>
<td>6</td>
<td>0.89</td>
<td>10</td>
<td>1.48</td>
</tr>
<tr>
<td>Infraestructura Industrial (2)</td>
<td>11.48%</td>
<td>8</td>
<td>0.92</td>
<td>8</td>
<td>0.92</td>
<td>8</td>
<td>0.92</td>
</tr>
<tr>
<td>Cond. socio económicas (3)</td>
<td>13.11%</td>
<td>6</td>
<td>0.79</td>
<td>6</td>
<td>0.79</td>
<td>8</td>
<td>1.05</td>
</tr>
<tr>
<td>Disp. de mano de obra calificada (4)</td>
<td>11.48%</td>
<td>8</td>
<td>0.92</td>
<td>8</td>
<td>0.92</td>
<td>6</td>
<td>0.69</td>
</tr>
<tr>
<td>Clima (5)</td>
<td>3.28%</td>
<td>8</td>
<td>0.26</td>
<td>8</td>
<td>0.26</td>
<td>8</td>
<td>0.26</td>
</tr>
<tr>
<td>Suministros de agua (6)</td>
<td>8.20%</td>
<td>8</td>
<td>0.66</td>
<td>8</td>
<td>0.66</td>
<td>8</td>
<td>0.66</td>
</tr>
<tr>
<td>Energía eléctrica (7)</td>
<td>6.56%</td>
<td>8</td>
<td>0.52</td>
<td>8</td>
<td>0.52</td>
<td>8</td>
<td>0.52</td>
</tr>
<tr>
<td>Terrenos (8)</td>
<td>11.48%</td>
<td>8</td>
<td>0.92</td>
<td>6</td>
<td>0.69</td>
<td>4</td>
<td>0.46</td>
</tr>
<tr>
<td>Servicios de transporte (9)</td>
<td>11.48%</td>
<td>4</td>
<td>0.46</td>
<td>4</td>
<td>0.46</td>
<td>10</td>
<td>1.15</td>
</tr>
<tr>
<td>Seguridad (10)</td>
<td>8.20%</td>
<td>6</td>
<td>0.49</td>
<td>6</td>
<td>0.49</td>
<td>2</td>
<td>0.16</td>
</tr>
<tr>
<td>TOTAL</td>
<td>6.52</td>
<td></td>
<td>6.59</td>
<td></td>
<td></td>
<td></td>
<td>7.34</td>
</tr>
</tbody>
</table>

Elaboración propia

Los resultados concluyen que la mejor localización de la planta es en el departamento de Lima, principalmente por su cercanía y menor tiempo de recorrido al mercado meta al cual está dirigido el producto.

3.3.2. Evaluación y selección de la micro localización

La planta de producción de conserva de mango debe estar localizada en un lugar estratégico para abastecer al mercado meta. Se considerarán como opciones de micro localización aquellos distritos que cuenten con una zona industrial desarrollada.

Dado a ello, se tomará en consideración los distritos de: Puente Piedra, Los Olivos y Ate. A continuación se presenta un mapa de las posibles localizaciones de la planta.
En el departamento de Lima, se produce el mango en el valle de Huaral, además se puede obtener mango de diversos proveedores, específicamente en los mercados mayoristas. Se realizará una evaluación utilizando el mismo método de Ranking de Factores para determinar la micro localización de planta el cual requiere de la consideración de los factores mencionados a continuación:

- **Disponibilidad de servicios (1)**

 Este factor se refiere a servicios que ofrezcan un soporte logístico a la coordinación, compra, almacenamiento y transporte del mango. Los distritos de Puente Piedra, Los Olivos y Ate presentan un alto desarrollo, ya que cuentan con los servicios de agua, electricidad, teléfonos e internet.

- **Mano de obra calificada (2)**

 El departamento de Lima, por ser el de mayor desarrollo industrial a nivel nacional, cuenta con personal calificado para realizar labores administrativas y técnicas en cuanto a la manipulación de las maquinarias.

Fuente: Google Imágenes (2016)
• **Disponibilidad de transporte (3)**

El distrito con mayor accesibilidad a la carretera Panamericana Norte es el de Puente Piedra, seguido por Los Olivos y finalmente el distrito de Ate. Si bien es cierto que las distancias entre distritos no son tan largas en kilometraje, existe una dificultad latente que es el tráfico y éste se vuelve un factor determinante al momento de adquirir la materia prima y distribuir los productos hacia los clientes finales.

• **Terrenos (4)**

A continuación, en la tabla 3.13 se presenta el precio por metro cuadrado de terreno en las distintas locaciones.

<table>
<thead>
<tr>
<th>Ubicación</th>
<th>Costo (US$/m2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puente Piedra</td>
<td>185 – 220</td>
</tr>
<tr>
<td>Los Olivos</td>
<td>270 – 380</td>
</tr>
<tr>
<td>Ate</td>
<td>500 – 700</td>
</tr>
</tbody>
</table>

Fuente: OLX. (2016)
Elaboración propia

• **Seguridad (5)**

Según las más recientes cifras del Observatorio de Criminalidad del Ministerio Público la lista de los distritos con más denuncias de robos son Ate Vitarte (782), Los Olivos (767), San Martín de Porres (713), Callao (697), Villa María del Triunfo (546), Puente Piedra (532) e Independencia (519).

• **Cercanía al mercado meta (6)**

Otro factor a tener en cuenta es la cercanía al mercado meta, ya que una menor distancia al mercado implicaría reducir los costos de transporte y el tiempo de entrega.

En las tabla 3.14, se presenta la matriz de enfrentamiento de factores de micro localización y se usará la escala de calificación de alternativas según la tabla 3.11. Finalmente, en la tabla 3.15 se plasmará por el método de ponderación de factores, la localización de la planta.
Tabla 3.14

Matriz de enfrentamiento de factores de micro localización

<table>
<thead>
<tr>
<th>Factor</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Conteo</th>
<th>Ponderación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disponibilidad de servicios (1)</td>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>12.50%</td>
</tr>
<tr>
<td>Mano de obra calificada (2)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td></td>
<td>20.83%</td>
</tr>
<tr>
<td>Disponibilidad de transporte (3)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td></td>
<td>12.50%</td>
</tr>
<tr>
<td>Terrenos (4)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td></td>
<td>20.83%</td>
</tr>
<tr>
<td>Seguridad (5)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
<td>16.67%</td>
</tr>
<tr>
<td>Cercanía al mercado meta (6)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td>4</td>
<td>16.67%</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100.00%</td>
</tr>
</tbody>
</table>

Elaboración Propia

Tabla 3.15

Calificación para la selección de micro localización de la planta

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Puente Piedra</td>
<td></td>
<td></td>
<td></td>
<td>Los Olivos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disponibilidad de servicios (1)</td>
<td>12.50%</td>
<td>8</td>
<td>1.00</td>
<td></td>
<td>8</td>
<td>1.00</td>
<td></td>
<td>8</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Mano de obra calificada (2)</td>
<td>20.83%</td>
<td>8</td>
<td>1.67</td>
<td></td>
<td>8</td>
<td>1.67</td>
<td></td>
<td>8</td>
<td>1.67</td>
<td></td>
</tr>
<tr>
<td>Disponibilidad de transporte (3)</td>
<td>12.50%</td>
<td>4</td>
<td>0.50</td>
<td></td>
<td>6</td>
<td>0.75</td>
<td></td>
<td>8</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Terrenos (4)</td>
<td>20.83%</td>
<td>10</td>
<td>2.08</td>
<td></td>
<td>8</td>
<td>1.67</td>
<td></td>
<td>4</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>Seguridad (5)</td>
<td>16.67%</td>
<td>8</td>
<td>1.33</td>
<td></td>
<td>4</td>
<td>0.67</td>
<td></td>
<td>4</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>Cercanía al mercado meta (6)</td>
<td>16.67%</td>
<td>4</td>
<td>0.67</td>
<td></td>
<td>6</td>
<td>1.00</td>
<td></td>
<td>8</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>7.25</td>
<td>6.75</td>
<td>6.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elaboración Propia

Considerando el análisis realizado anteriormente el distrito de Puente Piedra sería el lugar escogido para establecer la planta.
CAPÍTULO IV. TAMAÑO DE PLANTA

“La capacidad de la planta es necesaria en todo estudio de viabilidad. Los parámetros como pronóstico de la demanda, penetración en el mercado, disponibilidad de materiales básicos e insumos requieren de un análisis en cuanto a tamaño y capacidad de planta. Definidas las limitaciones sobre los pronósticos de la demanda y el mercado, se deben evaluar otros componentes del estudio de viabilidad para determinar la capacidad de la planta. Esta capacidad representa el nivel óptimo de producción que puede estar determinado por la interacción de la tecnología y equipo, disponibilidad de recursos, costos de inversión y de producción, ventas y penetración del mercado”. (Díaz, Jarufe y Noriega, 2007, p.71).

4.1. Relación tamaño-mercado

Se basa en el análisis de la demanda, así como el pronóstico de ventas estimado en el mercado nacional, mostrando una tendencia de crecimiento. De acuerdo a este factor se puede definir un tamaño necesario que cubra la demanda o parte de ella durante los 5 años de duración del proyecto.

En el capítulo Nº II se analizó todo lo referente al estudio de mercado, donde se analizaron los pronósticos de demanda, se definió la demanda para el proyecto en función a información investigada de DataTrade y con los resultados de la encuesta (ver Anexo 1), además del análisis de las empresas que ya comercializan el producto a nivel nacional. La tabla 4.1 muestra la demanda para el proyecto de conserva de mango, donde se observa que la demanda estimada para el año 2021 será de 97.99 toneladas.

Tabla 4.1

Demanda del proyecto de conserva de mango

<table>
<thead>
<tr>
<th>Año</th>
<th>Demanda específica del proyecto</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>63.54</td>
</tr>
<tr>
<td>2018</td>
<td>72.15</td>
</tr>
<tr>
<td>2019</td>
<td>80.76</td>
</tr>
<tr>
<td>2020</td>
<td>89.38</td>
</tr>
<tr>
<td>2021</td>
<td>97.99</td>
</tr>
</tbody>
</table>

Elaboración propia
La demanda para el proyecto de conserva de mango en almíbar para el año 2021, se expresa en cantidad de frascos por año. A continuación en la tabla 4.2 se muestra el tamaño-mercado expresado en frascos por año del producto.

Tabla 4.2

<table>
<thead>
<tr>
<th>Frascos por año de conserva de mango</th>
</tr>
</thead>
<tbody>
<tr>
<td>97.99 toneladas (\times) 1000 kg (\times) 1 frasco</td>
</tr>
<tr>
<td>1 año (\times) 1 tonelada (\times) 0.435 kg</td>
</tr>
<tr>
<td>= 225,265 frascos año⁻¹</td>
</tr>
</tbody>
</table>

Elaboración propia

4.2. Relación tamaño-recursos productivos

Está dada por la disponibilidad de los recursos para la elaboración del producto final. De no contar con éstos, no se podría cubrir la demanda del proyecto. Dentro de los recursos mencionados están comprendidos la materia prima, los insumos, mano de obra calificada, la energía eléctrica y el agua. Por ello es importante realizar un estudio de la disponibilidad de éstos, proyectándolos a futuro.

Como se concluyó en el Capítulo Nº III, los productores que proveen la materia prima en el mercado local tienen la capacidad de atender los requerimientos para la comercialización de conserva de mango en almíbar una vez iniciado el proyecto; por ende, no habrá necesidad de importar insumos entre los meses de Octubre a Marzo.

En cuanto a la mano de obra necesaria, se concluye que no existiría ningún imprevisto, dado que en Lima se cuenta con personal calificado para realizar labores administrativas y técnicas en cuanto a la manipulación de las maquinarias.

En cuanto a los servicios de energía eléctrica y de agua potable, como se afirmó en el capítulo Nº III, no existiría ningún problema, ya que la localización de la planta será en Lima, y la energía suministrada es por la empresa Edelnor y la de agua potable será por Sedapal.

A continuación en la tabla 4.3 se muestra el tamaño-recurso productivo expresado en frascos de conserva de mango por año.
Tabla 4.3
Frascos por año de conserva de mango

\[
\frac{136.70 \text{ toneladas}}{\text{año}} \times \frac{1000 \text{ kg}}{1 \text{ tonelada}} \times \frac{1 \text{ frasco}}{0.435 \text{ kg}} = 314,233 \frac{\text{frascos}}{\text{año}}
\]

Elaboración propia

4.3. Relación tamaño-tecnología

La tecnología del proyecto estará comprendida por maquinarias, equipos y el conjunto de conocimientos necesarios para el proceso de elaboración de conserva de mango en almíbar.

“Se puede hacer uso de tecnología altamente automatizada y/o manual, basándose en la capacidad o volumen de producción de la máquina o máquinas que comprenden el cuello de botella.” (Díaz, Jarufe y Noriega, 2007, p.72).

En este caso el cuello de botella es el proceso de descarozado, el cual consiste en quitar el hueso o carozo del mango, ya que lo realizarán dos operarios de forma manual, a los cuales les toma un tiempo aproximado de 15 segundos para descarozar dos mangos de forma simultánea.

A continuación en la tabla 4.4 se muestra el tamaño-tecnología expresado en frascos de conserva de mango en almíbar por año.

Tabla 4.4
Frascos por año de conserva de mango en almíbar

\[
\frac{0.5 \text{ kg}}{1 \text{ mango}} \times \frac{1 \text{ mango}}{7.5 \text{ seg}} \times \frac{3600 \text{ seg}}{1 \text{ hora}} \times \frac{8 \text{ horas}}{1 \text{ día}} \times \frac{22 \text{ días}}{1 \text{ mes}} \times \frac{6 \text{ meses}}{1 \text{ año}} \times \frac{1 \text{ frasco}}{0.435 \text{ kg}} = 582,621 \frac{\text{frascos}}{\text{año}}
\]

Elaboración propia

4.4. Relación tamaño-inversión

El tamaño de la planta está ligado al nivel de inversión, ya que éste determina la tecnología y los recursos que se utilizarán en el proyecto. Los costos de la planta como la maquinaria, equipos e instalación, forman parte de éstos recursos de inversión

En el capítulo Nº VII se detallará el monto de inversión para la implementación y puesta en marcha de la planta productora, el cual asciende a S/. 1’640,582.
4.5. Relación tamaño-punto de equilibrio

Para definir el tamaño mínimo de cualquier proyecto, se debe analizar el punto de equilibrio, es decir, aquel volumen de producción donde los ingresos percibidos igualan a los costos incurridos, asumiendo que todo lo que se produce es vendido. En este sentido, el tamaño mínimo corresponde a la siguiente ecuación:

\[
Q_{\text{min}} = \frac{\text{CF}}{p - \text{Cv}}
\]

CF: costos fijos totales de la planta (gastos administrativos, sueldos y salarios, mantenimiento del local y su depreciación)

p: Precio unitario de venta

Cv: Costo variable unitario

A continuación en las tablas 4.5 y 4.6, se detallan los costos fijos y variables que tendrá el proyecto.

Tabla 4.5
Costos fijos anuales

<table>
<thead>
<tr>
<th>Costos fijos</th>
<th>S/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervisor Producción</td>
<td>56,000</td>
</tr>
<tr>
<td>Supervisor Operaciones</td>
<td>-</td>
</tr>
<tr>
<td>Supervisor Calidad</td>
<td>56,000</td>
</tr>
<tr>
<td>17 Operarios</td>
<td>261,800</td>
</tr>
<tr>
<td>Supervisor Logística</td>
<td>-</td>
</tr>
<tr>
<td>Analista Comercial y Finanzas</td>
<td>30,800</td>
</tr>
<tr>
<td>Analista Marketing y RRHH</td>
<td>30,800</td>
</tr>
<tr>
<td>Limpieza</td>
<td>28,000</td>
</tr>
<tr>
<td>Vigilancia</td>
<td>36,400</td>
</tr>
<tr>
<td>Transporte</td>
<td>112,800</td>
</tr>
<tr>
<td>Mantenimiento</td>
<td>16,800</td>
</tr>
<tr>
<td>Publicidad y marketing</td>
<td>37,000</td>
</tr>
<tr>
<td>Degustaciones</td>
<td>10,800</td>
</tr>
<tr>
<td>Página web</td>
<td>2,500</td>
</tr>
<tr>
<td>Depreciación</td>
<td>51,850</td>
</tr>
<tr>
<td>Agua</td>
<td>5,390</td>
</tr>
<tr>
<td>Luz</td>
<td>54,351</td>
</tr>
<tr>
<td>Teléfono</td>
<td>3,500</td>
</tr>
<tr>
<td>Total</td>
<td>794,791</td>
</tr>
</tbody>
</table>

Elaboración propia
Tabla 4.6

Costos variables

<table>
<thead>
<tr>
<th>Insumos</th>
<th>Costo insumo</th>
<th>Requerimiento</th>
<th>Unidad</th>
<th>Costo Unitario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mango</td>
<td>S/.1.63 / kg</td>
<td>634.25</td>
<td>g</td>
<td>S/. 1.03</td>
</tr>
<tr>
<td>Agua</td>
<td>S/.0.55 / lt</td>
<td>219.52</td>
<td>ml</td>
<td>S/. 0.12</td>
</tr>
<tr>
<td>Azúcar</td>
<td>S/.1.598 / kg</td>
<td>94.22</td>
<td>g</td>
<td>S/. 0.15</td>
</tr>
<tr>
<td>CMC (Carboximetil Celulosa)</td>
<td>S/.70.00 / kg</td>
<td>0.32</td>
<td>g</td>
<td>S/. 0.02</td>
</tr>
<tr>
<td>Agua</td>
<td>S/.0.408 / und</td>
<td>1</td>
<td>und</td>
<td>S/. 0.41</td>
</tr>
<tr>
<td>Azúcar</td>
<td>S/.3.128 / kg</td>
<td>0.63</td>
<td>g</td>
<td>S/. 0.00</td>
</tr>
<tr>
<td>Acido ascórbico</td>
<td>S/.0.219 / und</td>
<td>1</td>
<td>und</td>
<td>S/. 0.22</td>
</tr>
<tr>
<td>Cajas</td>
<td>S/.0.90 / und</td>
<td>1/10</td>
<td>und</td>
<td>S/. 0.09</td>
</tr>
<tr>
<td>Total</td>
<td>S/. 2.225</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elaboración propia

Según resultados de la encuesta, el precio de venta para un frasco de 750 gramos de mango en almíbar a los intermediarios, sería de S/.10.00.

Este método nos indica que el tamaño ideal de planta sería de 102,224 frascos de conserva de mango, según la tabla 4.7.

Tabla 4.7

Tamaño-punto de equilibrio para frascos de conserva de mango

\[
\frac{794,791 \text{ sales}}{1 \text{ año}} \times \left(\frac{10 - 2.225}{1 \text{ frasco}} \right) = 102,224 \text{ frascos año}
\]

Elaboración propia

4.6. Selección del tamaño de planta

El tamaño de planta se elige en función a los resultados obtenidos en las relaciones anteriores, teniendo como limitantes dos factores:

- El punto de equilibrio: Se debe producir una cantidad mayor a este punto para generar ganancias.
- La menor cantidad en frascos/año obtenida en las relaciones de:
 - Mercado
 - Recursos productivos
 - Tecnología
El tamaño de planta estará determinado por la relación tamaño – mercado, considerando que es superior al punto de equilibrio, tal como se detalla en la tabla 4.8.

Tabla 4.8

Frascos producidos anualmente en función al tamaño de planta

<table>
<thead>
<tr>
<th>Relación</th>
<th>Conserva de mango (frascos/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamaño-mercado</td>
<td>225,265</td>
</tr>
<tr>
<td>Tamaño-recursos productivos</td>
<td>314,233</td>
</tr>
<tr>
<td>Tamaño-tecnología</td>
<td>582,621</td>
</tr>
<tr>
<td>Tamaño-punto de equilibrio</td>
<td>102,224</td>
</tr>
</tbody>
</table>

Elaboración propia

Respecto al punto de equilibrio se aprecia que sí es superado, por lo tanto es factible la instalación de la planta.
CAPÍTULO V. INGENIERÍA DEL PROYECTO

5.1. Definición técnica del producto

5.1.1. Especificaciones técnicas del producto

La conserva de mango en almíbar es natural, no contiene saborizantes, colorantes, es decir, pulpa 100% natural. La presentación del producto final será en frascos de vidrio, sellados con tapa metálica en la parte superior y con un peso neto de 750 gramos y un peso drenado de pulpa de 435 gramos. Se ha considerado la presentación en frasco de vidrio, ya que el producto puede visualizarse y además garantiza la conservación del mismo.

La conserva se basa en pulpa de mango en mitades, la cual será debidamente tratada, sin cáscara ni pepa. Adicional a ello contendrá almíbar para preservar la misma. La etiqueta incluirá la información del fabricante, características del producto, así como los registros exigidos por DIGESA.

5.1.2. Composición del producto

El mango es un fruto proveniente del sudeste asiático rico en calcio, magnesio, potasio, fósforo, vitamina A, vitamina C y ciertos aminoácidos. La tabla 5.1 nos brinda la composición de 100 g de pulpa de mango.

Tabla 5.1

<table>
<thead>
<tr>
<th>Componente</th>
<th>Peso</th>
<th>Unidad</th>
<th>Componente</th>
<th>Peso</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agua</td>
<td>83</td>
<td>g</td>
<td>Cobre</td>
<td>0,11</td>
<td>mg</td>
</tr>
<tr>
<td>Energía</td>
<td>65</td>
<td>Kcal</td>
<td>Zinc</td>
<td>0,04</td>
<td>mg</td>
</tr>
<tr>
<td>Grasas</td>
<td>0,30</td>
<td>g</td>
<td>Selenio</td>
<td>0,6</td>
<td>mg</td>
</tr>
<tr>
<td>Proteína</td>
<td>0,70</td>
<td>g</td>
<td>Calcio</td>
<td>17,6</td>
<td>mg</td>
</tr>
<tr>
<td>Hidratos carbono</td>
<td>17</td>
<td>g</td>
<td>Carbohidrato</td>
<td>13,9</td>
<td>g</td>
</tr>
<tr>
<td>Fibra</td>
<td>1,8</td>
<td>g</td>
<td>Vitamina C</td>
<td>27,7</td>
<td>mg</td>
</tr>
<tr>
<td>Potasio</td>
<td>156</td>
<td>mg</td>
<td>Vitamina A IU</td>
<td>3,894</td>
<td>mg</td>
</tr>
<tr>
<td>Sodio</td>
<td>25,2</td>
<td>mg</td>
<td>Vitamina (B6) Piridoxina</td>
<td>0,134</td>
<td>mg</td>
</tr>
<tr>
<td>Magnesio</td>
<td>9</td>
<td>mg</td>
<td>Vitamina E</td>
<td>0,1</td>
<td>mg</td>
</tr>
<tr>
<td>Fósforo</td>
<td>11</td>
<td>mg</td>
<td>Ácido fólico</td>
<td>14</td>
<td>mg</td>
</tr>
</tbody>
</table>

Elaboración propia
5.1.3. Diseño gráfico del producto

En la figura 5.1 se muestra el diseño gráfico de la conserva de mango en almíbar, con un peso neto de 750 gramos, cuya presentación será en frascos de vidrio sellados con tapa metálica.

Se ha determinado colocar una imagen del mango en mitades para identificar que se trata de un producto 100% natural, tal como se especifica en la etiqueta. Adicional a ello, para incentivar la compra de productos nacionales se ha puesto el logo “Hecho en Perú”.

Figura 5.1

Producto Mangood - Conserva de mango en almíbar

5.1.4. Regulaciones técnicas al producto

Todos los productos alimenticios para ser comercializados en el mercado nacional deben cumplir con la norma técnica peruana “NTP 209.038:2009 Alimentos Envasados. Etiquetado, 7º edición”.

Esta Norma Técnica Peruana establece la información que debe llevar todo alimento envasado destinado al consumo humano.

Dentro de las partes que se debe tener en cuenta son:

- Fecha de producción, de envasado, de vencimiento (“consumir preferentemente antes de”), lote de producción, instrucciones para la conservación, registro
sanitario.

- Naturaleza del producto: Nombre del alimento.
- Origen del producto: País de origen, región productora, nombre y domicilio legal del fabricante.
- Características comerciales: Contenido neto y peso escurrido.
- Tabla de información nutricional.
- Lista de ingredientes por orden decreciente de peso, aditivos alimentarios

5.2. Tecnologías existentes y procesos de producción

5.2.1. Naturaleza de la tecnología requerida

5.2.1.1. Descripción de las tecnologías existentes

Los tipos de tecnología artesanal, semi-automatizada y automatizada, pueden aplicarse a la industria de conservas.

La tecnología automatizada requiere de personal calificado, altos volúmenes de producción y una elevada inversión económica, como la empresa agroindustrial Camposol, que en sus estados financieros del primer trimestre del 2017 muestra en sus activos por planta y equipamiento un monto de 368 millones de dólares; por ende este tipo de tecnología queda descartada debido a que el proyecto no lo requiere. Con respecto a la tecnología artesanal, dado que muchas veces no se cumplen con los estándares de calidad, existe riesgo de la inocuidad del producto; por consiguiente también queda descartada.

Según León Romero, un proceso semi-automatizado es aquel en que una parte es realizada de manera automática y otra necesita la intervención humana, normalmente suele ser aplicado en pequeñas empresas. En el caso del presente estudio, se ha optado por el uso de esta tecnología.

El personal será permanentemente capacitado y además debe tener una experiencia previa en cuanto a manipulación de equipos de la misma industria. A continuación se detallarán las tecnologías existentes para cada operación del proceso de producción.
Lavado en húmedo

Según FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura). Es la primera operación que se realiza en un proceso de producción. Para llevarlo a cabo se necesitan estanques con agua recirculante o simplemente con agua detenida, con la finalidad de eliminar cualquier tipo de suciedad que la materia prima trae consigo antes que entre a la línea de proceso. Los tipos de lavado en húmedo utilizados en la industria de alimentos son los de inmersión, aspersión y flotación.

a. Inmersión

Para el lavado por inmersión se debe utilizar un contenedor de acero inoxidable que permita una adecuada limpieza, desinfección para la eliminación de lodo, sin ocasionar daños físicos a la materia prima. Con el objetivo de obtener mejores resultados durante el lavado por inmersión, es importante utilizar agua clorada (6 ppm) y efectuar un recambio frecuente del agua de inmersión. Este es el método más simple en la industria.

b. Aspersión

La fruta o materia prima es introducido a duchas de agua a presión o aspersores, removiendo de forma eficiente cualquier residuo o suciedad. En la industria es el método de lavado más utilizado.

c. Flotación

La diferencia de densidad entre la materia prima y los contaminantes es aprovechada por éste método, ya que la fruta muy madura o podrida se hunde y la que se encuentra en buen estado se mantiene a flote.

Pelado

Según FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura), consiste en retirar la cáscara de la fruta, utilizando cuchillos o similares, el uso de calor o a través de componentes químicos que remueven la cáscara por pérdida de integridad de los tejidos.
a. **Pelado mecánico**

 Este método aplica el corte y la abrasión. Con respecto al corte éste consiste en presionar la fruta en rotación contra unas cuchillas fijas y en la abrasión el pelado se realizará mediante rodillos o cilindros giratorios.

b. **Pelado térmico**

 Existen 2 sistemas para este tipo de pelado.

 El pelado con vapor consiste en someter la materia prima por un intervalo de 15 a 30 segundos a una corriente de vapor el cual elimina la cáscara y la vuelve fácilmente removible.

 En el pelado por flama la materia prima es colocada en bandas transportadoras giratorias que pasan a través de hornillas, con flamas que alcanzan los 400°C. La piel se quema y se elimina con chorros de agua a presión.

c. **Pelado químico**

 La materia prima a ser pelada es sumergida en una solución diluida (2-20 %) de hidróxido de sodio (NaOB) a temperaturas cercanas a ebullición entre 95 y 100 °C, durante dos u ocho minutos. El NaOB desintegra la cáscara y ésta es removida con agua a presión.

d. **Pelado manual**

 Este método es usado cuando el pelado químico, térmico y mecánico no pueden ser utilizado debido a que las características de la cáscara no lo permiten. Este tipo de pelado requiere de cuchillos o similares en forma esférica, recta o curva. La desventaja de este tipo de pelado es que requiere de personal capacitado.

Corte

a. **Corte mecánico**

 Es cuando la máquina puede realizar el corte en mitades y la extracción de la semilla o hueso, previo pelado.
b. **Corte manual**

Es realizado por un operario con ayuda de herramientas como cuchillos y accesorios de formas curvas o esféricas.

Escaldado

Según FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura), el escaldado es un tratamiento térmico de alta temperatura por un período corto que es utilizado para ablandar la fruta con la finalidad de facilitar el llenado de los envases, inactivar enzimas deteriorantes causantes de malos olores, malos sabores y fallas del color natural del producto. El operario debe revisar periódicamente la temperatura para evitar daños a la materia prima que afecten sus características físicas y químicas. Posteriormente, el enfriamiento debe ser rápido.

a. Escaldado con agua caliente

Esta forma de escaldado es muy eficiente y uniforme, ya que el proceso puede controlarse adecuadamente. La principal desventaja es el gran volumen de agua requerido para el contacto directo con el producto, lo que a su vez ocasiona la lixiviación de ácidos, vitaminas y minerales importantes para la nutrición humana.

b. Escaldado por vapor

Con este método la materia prima retiene su contenido nutritivo, pero es menos eficiente, ya que se requieren mayores tiempos para la inactivación enzimática, es más difícil controlar el tiempo y la temperatura, y el producto puede dañarse.

c. Escaldado químico

Se utiliza cuando los dos métodos anteriores provocan daños graves al producto (como en la fresa y el higo). Se realiza mediante la aplicación de dióxido de azufre, sulfítos, bisulfítos o metabisulfítos, los cuales reaccionan con compuestos fenólicos que inactivan enzimas.
Envasado

a. **Envasado rotativo**

Normalmente este método es utilizado para envasar grandes lotes de producción a altas velocidades de productos líquidos, sólidos, polvos o granulados, dependiendo del número de boquillas de envasado de la máquina.

b. **Envasado lineal**

Sirve para envasar volúmenes de producción moderados y diferentes tamaños de envase. Opera automáticamente y está optimizado para lograr un proceso eficiente y confiable. Se pueden envasar productos líquidos, sólidos, polvos o granulados.

c. **Envasado de baja capacidad**

Normalmente se utiliza en pequeñas empresas que buscan optimizar su proceso productivo mediante equipos prácticos y sencillos, que logren mejorar el proceso productivo de pequeños lotes de envasado de productos líquidos.

d. **Envasado manual**

Este proceso lo realizará personal capacitado de la empresa, teniendo en cuenta las buenas prácticas de manufactura.

Esterilizado

a. **Sistema de enjuagado de base manual**

Según la compañía encargada del diseño y fabricación de maquinarias Equitek, éste sistema consta de una charola en la cual están montadas dos boquillas de acción manual, las cuales inyectan aire o agua con el fin de remover posibles contaminantes. La charola sirve para recoger los residuos de agua después del enjuague y canalizarlos al desagüe. La capacidad de producción es menor a 30 envases por minuto, según la habilidad del operador.

b. **Sistema de enjuagado de envase automático lineal**

Según Equitek, consta de un sistema automático lineal el cual enjuaga los
envases nuevos. Ésta puede estar equipada desde 4 hasta 12 boquillas de enjuagado, pudiendo manejar envases de vidrio.

Consiste en un sistema neumático que gira los envases 180°, inyectando un chorro de agua al fondo del envase para remover posibles contaminantes. El agua es drenada a una charola recolectora y los envases vuelven a colocarse en el transportador al finalizar el ciclo. La capacidad de producción es hasta 80 envases por minuto, dependiendo del número de boquillas del equipo, tamaño y forma del envase.

c. **Sistema de enjuagado de envase automático rotativo**

De acuerdo a Equitek, consta de un grupo de equipos automáticos en formato rotativo para el enjuagado de envases nuevos. Ideal para complementarse con equipos de envasado rotativos, estos equipos se ofrecen desde 12 hasta 32 boquillas de enjuagado, pudiendo manejar envases de vidrio con volúmenes desde 100 hasta 1500 ml.

Consisten en un sistema de estrellas, las cuales sacan el envase del transportador y lo transfieren por medio de una estrella a un sistema de sujeción de cuello por medio de un gripper. Al ir girando el envase en el cabezal de enjuagado, éste es girado 180° y colocado boca abajo sobre una boquilla, la cual inyecta un chorro de agua al fondo del envase por un determinado tiempo. Al final del recorrido, el agua es drenada del envase y éste regresa a su posición para ser regresado al transportador. La capacidad de producción es hasta 200 envases por minuto.

Taponado

Según la empresa Equitek, existen los siguientes sistemas de taponado:

a. **Sistema de taponado manual**

El enroscador manual consta de un cabezal de enroscado manual para trabajo pesado, de operación neumática, el cual tiene un control de torque aplicado ajustable. Dependiendo de la habilidad del operador para colocar la tapa y apretarla, pudiendo lograr producciones de hasta 30 tapas por minuto.
b. **Sistema de taponado semiautomático**

El enroscador semiautomático consta de un cabezal de enroscado de tapas para trabajo pesado, de operación neumática. La función del operador solamente es colocar la tapa sobre el envase. Una vez enroscada la tapa, las trampas se abren y se libera el envase. La capacidad de producción de este equipo es de aproximadamente 40 envases por minuto, dependiendo de la forma y del tamaño de éste.

c. **Sistema de taponado automático**

Es un sistema de bandas, que sujetan el envase y lo llevan al sistema de colocado de tapa para posteriormente enroscarla. Este sistema puede trabajar con diferentes tipos de envases y tapas. La capacidad de producción estimada es de hasta 120 tapas por minuto, dependiendo del tamaño y forma del envase y el diámetro de la tapa.

d. **Sistema de taponado a presión**

Consiste en una banda de velocidad variable que aplica presión a las tapas colocadas sobre los envases. La capacidad de producción estimada de este equipo es de hasta 200 tapas por minuto, dependiendo de la velocidad del transportador y el tamaño de tapa y envase.

Etiquetado

a. **Equipo para etiquetado de envases cilíndricos**

Según Equitek, este equipo aplica etiquetas auto-adheribles a envases cilíndricos. El cabezal aplicador es por un PLC que cuenta con la capacidad para almacenar en memoria los valores de operación de diferentes productos, lo cual agiliza el cambio entre los diferentes envases o presentaciones. Este equipo puede aplicar hasta 120 etiquetas por minuto.

b. **Máquina de etiquetado rotativa**

Sus equipos de etiquetado rotativo se caracterizan por su alta capacidad de producción y precisión, logrando velocidades de hasta de 60,000 etiquetas por hora (1,000 unid/min).
Codificado

a. Inyección de tinta (inkjet)

Según Industrial Cody, la codificación inkjet (inyección de tinta) permite imprimir texto y gráficos sobre cualquier superficie y puede alcanzar altas velocidades de producción, por lo que en la actualidad es el sistema con mayor uso en la industria, de fácil manejo y costos de impresión bajos.

b. Marcado láser

Según Trotec Láser, el grabado láser es un proceso sin contacto con el objeto. El rayo láser genera un efecto de desgaste sobre el material. La profundidad de grabado depende de la potencia del equipo. Asimismo, hay superficies, como los plásticos o el metal, sobre los que el láser crea una reacción química que produce un cambio de coloración, por donde ha sido aplicado (a esto se le llama marcado láser).

c. Impresión por transferencia térmica

Se produce cuando el calor de los cabezales de la impresora se aplica a la cinta. El material de la cinta se transfiere a la etiqueta o papel. Este sistema es menos brusco con los cabezales de la impresora, pues la parte trasera de la cinta es muy suave y protege los cabezales de la fricción. Además con la impresión por transferencia térmica puede utilizar cualquier tipo de papel, tela y etiquetas tanto normales como térmicas.

d. Marcado con micropunto

Para marcado sobre metal, acero, madera y PVC. Trabaja a través de un punzón eléctrico y aire comprimido que va marcando la pieza y el mensaje con pequeños puntos.

Encajado

a. Encajado automático

El encajado automático introduce el producto dentro de la caja sin la intervención del operario.
b. **Encajado manual**

En este tipo de encajado el operario es quien introduce el producto dentro de la caja.

5.2.1.2. Selección de la tecnología

El material permitido en la industria alimentaria para los equipos involucrados en el proceso de producción debe ser de acero inoxidable de calidad AISI 304. Luego de analizar las opciones descritas en el punto anterior se procederá a seleccionar la maquinaria o proceso tecnológico que mejor se adapte a la cadena de producción.

Lavado

Se opta por el lavado por inmersión, ya que se empleará depósitos de acero inoxidable que permitan una adecuada limpieza y desinfección, a través de un sistema de burbujas de aire, las cuales elimina la suciedad, bacterias y residuos de pesticida. Para obtener mejores resultados durante el lavado por inmersión, es importante utilizar agua clorada.

Pelado

Se utilizará el proceso tecnológico de pelado mecánico, dado a que se hará uso de cuchillas fijas.

Corte

Será realizado por un operario con ayuda de herramientas como cuchillos y accesorios de formas curvas.

Escaldado

Se elegirá el método de escaldado con agua caliente, ya que es muy eficiente y uniforme, además el tiempo de cocción y la temperatura pueden controlarse adecuadamente.
Esterilizado

Se ha escogido la tecnología de sistema de enjuagado de envase automático lineal, ya que puede manejar envases de vidrio y su capacidad es de 80 envases por minuto.

Envasado

Se ha determinado que el proceso de envasado de pulpa de mango será realizado por personal capacitado de la empresa teniendo en cuenta las buenas prácticas de manufactura dado a que las otras tecnologías son costosas. En lo que respecta el envasado de almíbar, se ha optado por realizarlo de forma lineal, ya que se logra un proceso eficiente y confiable dado a que es automatizado.

Taponado

Se utilizará el sistema de enroscado automático dado a que el equipo es práctico, se puede manejar diferentes tipos de tapas y la cantidad de tapas que puede colocar en 1 minuto es de 60 aproximadamente.

Etiquetado

Se ha determinado el equipo para etiquetado de envases cilíndricos dado a que los frascos serán de forma cilíndrica.

Codificado

Se elegirá la codificación inkjet, ya que permite imprimir texto y gráficos sobre el vidrio, además no se produce contacto en ningún momento del proceso de marcado y puede alcanzar altas velocidades de producción. De manejo sencillo y coste por impresión más bajo.

Encajado

Se ha determinado que el encajado se realizará de manera manual por dos operarios.
5.2.2. Proceso de producción

5.2.2.1. Descripción del proceso

Inspección

El mango que llega a la planta debe pasar por un proceso de selección. Para esta tarea se contará con personal calificado, con el fin de evitar procesar frutos en mal estado, ya sea que estén “chancados” o muy maduros. El tamaño del mango Kent debe estar entre 9-13 cm de alto y el color debe ser rojizo.

Lavado

Después de seleccionar los mangos, éstos serán llevados hacia el área de lavado, donde la máquina debe contener agua clorada a un nivel de por lo menos 6 ppm, con el fin de reducir la carga microbiana y eliminar impurezas y suciedades del fruto.

Pelado

A través de una faja transportadora, los mangos lavados pasarán al proceso de corte. Este proceso se hará con una máquina peladora semiautomática, la cual realizará el pelado exterior del mango sin necesidad de calibrado logrando el máximo rendimiento.

Cortado

El proceso de corte o descarozado será realizado por el operario, quien extraerá el hueso del mango quedando sólo pulpa, la cual será cortada en tamaños adecuados de modo que permita ser introducido fácilmente dentro de los envases de vidrio.

De forma simultánea se realizan los siguientes procesos:

Despaletizado de frascos de vidrio: Los frascos de vidrios son despaletizados por lotes para su posterior esterilización.

Esterilizado de frascos de vidrio: En este proceso se realizará el enjuague de los frascos de vidrio con agua y cloro, lo que permitirá quitar las impurezas que pueda tener el envase.
Esterilizado de tapas: En este proceso se realizará el enjuague de las tapas con agua clorada, eliminando cualquier tipo de impureza.

Preparado de almíbar:

Según el departamento de tecnología de los alimentos y productos agropecuarios de la Universidad Nacional Agraria – La Molina, el almíbar será elaborado en una marmita. Se prepara con agua potable, azúcar blanca industrial, ácido cítrico, espesante y de acuerdo a la tecnología un conservador químico.

La cantidad de azúcar está en función a la fruta y al mercado consumidor, en el caso del mango se necesitan aproximadamente 2 kg de azúcar por cada 5 litros de agua. Por lo general se preparan almíbares entre 25 y 40 °Brix, pero en estos últimos años existe una tendencia a consumir fruta en almíbar con menos azúcar generalmente entre 16 a 20 °Brix. El ácido cítrico ayudará a la regulación del pH del almíbar, éste estará en el rango de 3.8 a 4.5.

El espesante es para darle cuerpo al almíbar, puede ser CMC (Carboximetil Celulosa) o Keltrol. Para facilitar su incorporación y evitar la formación de grumos, éstos deben ser mezclados con parte del azúcar, antes de su adición. El tiempo de mezclado es de aproximadamente 10 minutos a una temperatura de 100 ºC.

De manera simultánea se realizan los siguientes procesos:

Escaldado.

La pulpa de mango en mitades será llevada por una faja transportadora hacia la marmita. Según el departamento de tecnología de los alimentos y productos agropecuarios de la Universidad Nacional Agraria – La Molina, el escaldado es el proceso de calentamiento con el objetivo de reducir los elementos patógenos, tales como bacterias, protozoos, mohos y levaduras que puedan existir.

El escaldado emplea generalmente temperaturas por debajo del punto de ebullición (88ºC para el mango) durante 10 minutos, ya que en la mayoría de los casos las temperaturas por encima de este valor y tiempo afectan irreversiblemente a las características físicas y químicas producto alimenticio.
Control de calidad

Luego del proceso de escaldado de la pulpa, se extraerá una muestra para ser analizada en el laboratorio de calidad, con la finalidad de verificar que se hayan eliminado los elementos patógenos y que ésta conserve sus características físicas y químicas.

También se extraerá una muestra de almíbar, la cual pasará por un control de verificación de grados Brix entre 16 a 20, pH cuyo rango debe estar entre 3.8 a 4.5 y el almíbar debe presentar una mezcla homogénea. En caso no se cumpla con estas especificaciones, el almíbar será reprocesado.

Enfriado

Una vez que se ha culminado el proceso de escaldado, se retirará el agua de la marmita y se dejará enfriar los mangos en mitades por un período de 5 minutos.

Envasado de pulpa y pesado

Una vez que la pulpa pasó por el proceso de enfriado, un operario colocará la pulpa dentro de los frascos de vidrio. El peso aproximado de pulpa por envase debe ser de 435 gramos, por lo que se contará con balanzas electrónicas para mantener la proporción adecuada entre pulpa y almíbar.

Llenado de almíbar

Terminado el proceso de envasado de pulpa, por medio de una faja transportadora los frascos serán llevados a la máquina envasadora de almíbar, donde éstos serán llenados con aproximadamente 315 gramos de almíbar a una temperatura no menor a 85°C. El almíbar, será transportado a través de una bomba de 370 watts cuyo caudal es de 35 litros por minuto.

Taponado

Al terminar el proceso de llenado de almíbar se procederá a colocar las tapas tipo twist-off en los frascos por medio de una máquina automática.

Etiquetado

Una vez que los frascos estén sellados, se procederá a colocar las etiquetas en los frascos de vidrio a través de una máquina automática.
Codificado

Ya con los frascos etiquetados, se irá al proceso de codificado donde se detallará la fecha de producción, lote y vencimiento del producto final.

Control de calidad

Una vez que el producto esté terminado, se realizará un último control de calidad, en el cual se verificará que el etiquetado, codificado y taponado se haya realizado de manera adecuada. En caso no lo esté, será reprocesado.

Encajado

Finalmente se procederá al proceso de colocación del producto final en cajas cuya capacidad es de 10 frascos por caja.

5.2.2.2. Diagrama de proceso: DOP

El diagrama de proceso es una representación gráfica de los pasos que se siguen en toda una secuencia de actividades, dentro de un proceso o un procedimiento, identificándolos mediante símbolos de acuerdo con su naturaleza como se muestra a continuación en la figura 5.2.
Figura 5.2

DOP para la elaboración de conserva de mango en almíbar

Elaboración propia

5.2.2.3. Balance de materia y energía

En la figura 5.3 se detalla el balance de materia y energía para la elaboración de 100 cajas conteniendo 1,000 frascos de conserva de mango en almíbar.
Figura 5.3
Balance de materia y energía para la elaboración de conserva de mango en almíbar

Recepción de materia prima
634.25 kg de Mango
Selección de materia prima
602.54 kg
Lavado
590.49 kg
Pelado
496.01 kg
Corte
435.00 kg
Escaldado
435.00 kg
Envasar pulpa
435.00 kg
Llenar en almíbar
750.00 kg
Taponar
750.00 kg
Etiquetar
750.00 kg
Codificar
750.00 kg
Encajar
750.00 kg
100 cajas con 1,000 frascos de vidrio de conserva de mango en almíbar

Elaboración propia
5.3. Características de las instalaciones y equipos

5.3.1. Selección de la maquinaria y equipos

Después de haber realizado el estudio del proceso de elaboración de la conserva de mango en almíbar se procedió a seleccionar las maquinas que deberán ser adquiridas. Estas máquinas funcionan con energía eléctrica, por ende no será necesario la adquisición de ningún equipo generador de energía ni combustible. En el Anexo 4 se muestran las cotizaciones de las mismas. Las máquinas a utilizar son:

- Máquina de lavado
- Máquina peladora de mango
- 02 marmitas
- Máquina esterilizadora de frascos
- Máquina llenadora de almíbar
- Máquina taponadora
- Máquina etiquetadora
- Máquina codificadora

5.3.2. Especificaciones de la maquinaria

Lavadora general de alimentos

Según la cotización de la empresa Imarca C.A., la lavadora multifuncional Ref. 10064 tiene un sistema UV/03 para tratamiento y desinfección del agua limpia eliminando bacterias y residuos de pesticidas. Cuenta con un sistema de filtrado de agua con filtro activo de carbón para reciclar el agua, ahorrando hasta un 80% de la misma.

Fácil de operar, bajo consumo de energía, de alta eficiencia. Mediante un sistema de burbujas de aire, elimina el sucio de la cáscara de las frutas, evitando los choques o fricción entre las frutas. En la figura 5.4 se aprecia la máquina lavadora de frutas.
Figura 5.4
Lavadora de frutas

Fuente: Distribuidora Imarca C.A. (2016)

Especificaciones técnicas:

- Dimensiones: 2,05 (l) x 0,90 (a) x 1,35 (h) metros
- Peso: 250 kg
- Capacidad de producción: de 600 a 800 kg por hora
- Presión de agua: 1,6 mpa
- Grado de prueba de agua: IPX1
- Alimentación: 220VAC
- Poder de la bomba de aire: 2 HP (1,5 kW)
- Poder de la bomba de ciclo: 2 HP (1,5 kW)
- Poder de la correa: 0,18 kW
- Consumo de aire: 110 L/h
- Consumo de agua: 530 L
- Costo: S/. 23,616.00

Peladora para mango – PL6M

Según la cotización de la empresa Fruit Processing Machinery, la máquina peladora semiautomática PL6M con seis cabezas de procesamiento está destinada a pelar el mango. Esta es una máquina de alimentación manual de pelado exterior de todas las frutas sin necesidad de calibrado. La máquina está dotada con un cuadro eléctrico para la regulación de la velocidad de la fruta y de la cuchilla. Está construida en acero inoxidable y todos sus componentes son fácilmente intercambiables. A
continuación en la figura 5.5 se visualiza la máquina peladora.

Figura 5.5
Peladora para mango – PL6M

Fuente: PND. (2016)

Especificaciones técnicas del modelo PL6M

- Capacidad productiva: aprox. 35-40 frutos/min.
- Peso: aprox. 650 kg
- Alimentación Neumática: 7 bar
- Calibre frutos: H 110 - 150 mm; Ø 90-110 mm
- Dimensiones: 2,80 (l) x 2,10 (a) x 1,70 (h) metros
- Espesor piel: 1-3 mm
- Consumo de agua: P 2,5 bar 0,6 lt/min
- Tensión de servicio: 380 V. trifásico
- Consumo aire: 6 bar 190 l / min
- Potencia: 1,65 kW
- Operador empleado: 1
- Precio: S/. 151,864

Máquina para el escaldado o marmita

Según la cotización de la empresa Vulcano Tecnología Aplicada E.I.R.L, la marmita con agitador MRV 300 – I/C está diseñada para la estandarización, escaldado, calentamiento y formulación de productos líquidos y semilíquidos en la industria alimentaria y agroindustria, tales como néctares, pulpa, yogurt, mermeladas, chocolates, etc.
Construida con doble chaqueta (para aceite térmico o agua), garantiza la inocuidad del producto. Cuenta con válvulas esféricas de paso para control de ingreso de agua y desfogue de chaqueta y para la evacuación del producto.

Fácil manejo y mantenimiento con una gran disponibilidad de repuestos. En la figura 5.6 se muestra la marmita o máquina de escaldado.

Figura 5.6

Marmitta

Fuente: Vulcano Tecnología Aplicada. (2016)

Especificaciones técnicas:
- Capacidad de producción: 300 litros/hora.
- Motor de 1.5 HP (1.12 kW), 220 voltios, 50 - 60 Hz. Trifásico.
- Reductor de velocidad.
- Sistema de calentamiento con hornillas.
- Hornillas eléctricas.
- Peso: 185 Kg. aprox.
- Dimensiones: 0.95 (l) x 1.05 (a) x 2.10 (h) metros.
- Material: Acero Inoxidable AISI 304 (en contacto con el producto) y estructura en acero al carbono.
- Precio: S/. 14,950
Máquina esterilizadora de frascos

Según la empresa Equitek, el sistema de enjuagado de envases automático lineal puede estar equipado desde 4 hasta 12 boquillas de enjuagado. Es ideal para trabajar en conjunto con los equipos de envasado lineales; puede manejar envases de vidrio o polietileno (PET).

Enjuagado de envases nuevos desde 100 ml hasta 1500 ml o en ejecuciones especiales hasta 10 litros. Al ir girando el envase en el cabezal de enjuagado, éste es girado 180° y colocado boca abajo sobre una boquilla, la cual inyecta un chorro de agua al fondo del envase por un determinado tiempo. Al final del recorrido, el agua es drenada del envase y éste regresa a su posición para ser regresado al transportador. En la figura 5.7 se muestra la máquina esterilizadora de frascos de vidrio.

Figura 5.7
Máquina esterilizadora

Fuente: Equitek. (2016)

Especificaciones técnicas:
- Motor de 1 kW, 220 voltios. Trifásico
- Boca de llenado: 4 bocas
- Volumen de llenado: 60-2000ml
- Velocidad de llenado: 1440 frascos/hora
- Peso: 185 Kg. aprox.
- Dimensiones: 2,50 (l) x 1,50 (a) x 1,90 (h) metros
- Material: Acero Inoxidable AISI 304.
- Precio: S/. 18,580
Máquina llenadora de almíbar

Según la empresa PAIXIE Packing, esta máquina llenadora de líquidos es apropiada para líquidos como agua, bebidas, jugo, leche de soja, etc.

La máquina llenadora de líquidos del tipo lineal es ideal para todo tipo de tamaños y formas de envase. Se ajusta y se opera fácilmente. Manejo neumático, control PLC y pantalla táctil. La superficie de esta máquina y todas las partes que entren en contacto con los materiales son de acero inoxidable. La figura 5.8 muestra la máquina llenadora de almíbar.

Figura 5.8

Máquina llenadora de almíbar

Especificaciones técnicas:

- Material de llenado: Jugo, aceite, jabón líquido, shampoo, etc.
- Boca de llenado: 2 bocas
- Volumen de llenado: 30-2000ml
- Velocidad de llenado: 500 frascos/hora
- Precisión de llenado: ±1% (Nivel de líquido)
- Energía: 220/380v 50/60Hz
- Potencia: 2 kW
- Ruido de máquina único: ≤50dB
- Peso: 650Kg
- Dimensiones: 1,70 (l) x 0,98 (a) x 1,65 (h) metros
- Precio: S/. 49,200

Taponadora

La máquina taponadora para tapas twist-off de EFM Machinery está diseñada específicamente para automatizar el proceso completo de taponado de frascos de vidrio con tapas roscadas. Cuenta con un alimentador de tapas automático. La máquina usa inyección de vapor para crear vacío en los frascos durante el proceso de taponado, operación que se puede realizar en gran variedad de envases de vidrio. A continuación en la figura 5.9 se muestra la máquina taponadora.

Figura 5.9
Máquina taponadora

Especificaciones técnicas
- Voltaje: 220V, 50HZ.
- Potencia: 500 W
- Tamaño de las tapas: 10-30 mm (Alto), 30-100 mm (Ancho).
- Velocidad con la que se colocan las tapas: 900 frascos/hora
- Peso: 270 Kg
- Dimensiones: 2,10 (l) x 1,60 (a) x 1,90 (h) metros
- Precio: S/. 15,230
Máquina etiquetadora

La máquina etiquetadora de Paixie Pack posee diferentes tipos automáticos adecuados para todo tipo de botellas (redondas, cuadradas, planas, irregulares, etc). Esta funcionará con etiquetas adhesivas. La parte eléctrica que utiliza la máquina es un motor servo Panasonic, ojo eléctrico de Mitsubishi lo cual asegura la precisión y la rapidez que este proceso necesita. En la figura 5.10 se detalla la máquina etiquetadora.

Figura 5.10

Máquina etiquetadora

Fuente: Paixie Packing (2017)

Especificaciones técnicas:

- Modelo: Máquina Etiquetadora.
- Material del Envase: Vidrio, plástico, metal.
- Tamaño de la etiqueta: 30-200 mm (Alto), 30-100 mm (Ancho).
- Tamaño del Objeto: 30-200 mm (Alto), 30-100 mm (Ancho).
- Precisión de la etiqueta: ±1mm.
- Velocidad con la que se colocan etiquetas: 20-30 frascos/min.
- Voltaje: 220V, 50HZ
- Dimensiones: 2,30 (l) x 1,40 (a) x 1,80 (h) metros
- Potencia: 0.95 kW.
- Precio: S/. 10,660
- Elección de lenguaje (Pantalla Táctil): inglés, español, francés.
Máquina codificadora

La máquina codificadora de Paixie Pack, opta por la impresión térmica para evitar la contaminación, lo cual mantiene el ambiente limpio. Se utiliza para la fecha de producción en el envase. Las palabras impresas son duraderas ante el uso. Está disponible tanto para una impresión automática o controlada por un pedal manual. Es capaz de imprimir un código en un papel fino, cartón, cuero, plástico, papel aluminio, además posee un control de temperatura constante y la temperatura se puede ajustar. En la figura 5.11 se detalla la máquina etiquetadora.

Figura 5.11
Máquina codificadora

Fuente: Paixie Packing (2017)

Especificaciones técnicas:

- **Modelo:** HP-241B
- **Voltaje:** AC220/50HZ 110/60HZ
- **Potencia:** 120 W
- **Velocidad de Impresión:** 20-50 veces/min
- **Tamaño de la letra impresa:** 3 líneas, 2*4*15mm
- **Peso:** 9.5kgs
- **Dimensiones:** 0,27 (l) x 0,26 (a) x 0,36 (h) metros
- **Temperatura:** 0-200°C
- **Precio:** S/. 8,450
5.4. Capacidad instalada

5.4.1. Cálculo de la capacidad instalada

“Es el resultado de la definición del tamaño de planta, que resulta del diseño del proceso y está limitada por la capacidad de la tecnología implementada” (Díaz, Jarufe y Noriega, 2007, p.81).

De acuerdo a la demanda hallada en la tabla 2.10, la planta producirá 225,265 frascos de conserva de mango el último año, superando el punto de equilibrio que ha sido calculado en la tabla 4.7. Por ende, la planta no amerita que opere por encima del 33% de su capacidad instalada, dado a que operando a esta capacidad, el proyecto aún es rentable y viable. La planta trabajará 1 turno de 8 horas efectivas al día y 22 días al mes, siendo la capacidad total de la planta de:

\[
T = \text{Horas de trabajo mensual} - \text{Horas no efectivas mensuales} - \text{Horas de mantenimiento mensual}
\]

\[
T = 198 \text{ horas} - 22 \text{ horas} - 8 \text{ horas} = 168 \text{ horas}
\]

“El factor de utilización se aplica a una jornada de trabajo en la cual no todas las horas es dedicada a la producción (mantenimiento de equipos, paradas por refrigerio, otros).

Entonces se puede definir que el factor de utilización es el cociente entre el número de horas productivas desarrolladas (NHP) y el de horas reales (NHR) de jornada por período”. (Díaz, Jarufe y Noriega, 2007, p.85).

\[
U = \frac{\text{NHP}}{\text{NHR}} = \frac{198-22-8}{198} = 84.85\%
\]

Se está considerando un factor de eficiencia del operario de 90%, por lo que la eficiencia real del proyecto será:

\[
\text{Eficiencia} = 0.8485 \times 0.90 = 0.756
\]

En la tabla 5.2, se muestran las capacidades de las máquinas que se utilizarán en el proceso de producción.
Tabla 5.2

<table>
<thead>
<tr>
<th>Máquina</th>
<th>Producción / hora</th>
<th>Número de máquinas</th>
<th>Días / mes</th>
<th>Horas / turno</th>
<th>Turno / día</th>
<th>Factor de utilización</th>
<th>Factor de eficiencia</th>
<th>Capacidad de producción</th>
<th>Unidad de medida</th>
<th>F/Q</th>
<th>CO / F/Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lavadora</td>
<td>600 kg</td>
<td>1</td>
<td>22</td>
<td>8</td>
<td>1</td>
<td>0.8485</td>
<td>0.9000</td>
<td>80,540.00</td>
<td>kg / mes</td>
<td>7.50</td>
<td>10,752.00</td>
</tr>
<tr>
<td>Peladora</td>
<td>560 kg</td>
<td>1</td>
<td>22</td>
<td>8</td>
<td>1</td>
<td>0.8485</td>
<td>0.9000</td>
<td>48,384.00</td>
<td>kg / mes</td>
<td>7.50</td>
<td>6,451.20</td>
</tr>
<tr>
<td>Marmita</td>
<td>800 kg</td>
<td>2</td>
<td>22</td>
<td>8</td>
<td>1</td>
<td>0.8485</td>
<td>0.9000</td>
<td>40,320.00</td>
<td>kg / mes</td>
<td>7.50</td>
<td>5,376.00</td>
</tr>
<tr>
<td>Llenadora almibar</td>
<td>283.5 kg</td>
<td>1</td>
<td>22</td>
<td>8</td>
<td>1</td>
<td>0.8485</td>
<td>0.9000</td>
<td>38,102.40</td>
<td>kg/mes</td>
<td>7.50</td>
<td>5,080.32</td>
</tr>
<tr>
<td>Tatadora</td>
<td>900 und</td>
<td>1</td>
<td>22</td>
<td>8</td>
<td>1</td>
<td>0.8485</td>
<td>0.9000</td>
<td>120,960.00</td>
<td>frascos/mes</td>
<td>10.00</td>
<td>12,096.00</td>
</tr>
<tr>
<td>Etiquetadora</td>
<td>1200 und</td>
<td>1</td>
<td>22</td>
<td>8</td>
<td>1</td>
<td>0.8485</td>
<td>0.9000</td>
<td>161,280.00</td>
<td>frascos/mes</td>
<td>10.00</td>
<td>16,128.00</td>
</tr>
<tr>
<td>Codificadora</td>
<td>1200 und</td>
<td>1</td>
<td>22</td>
<td>8</td>
<td>1</td>
<td>0.8485</td>
<td>0.9000</td>
<td>161,280.00</td>
<td>frascos/mes</td>
<td>10.00</td>
<td>16,128.00</td>
</tr>
</tbody>
</table>

Elaboración propia
5.4.2. Cálculo detallado del número de máquinas requeridas

La capacidad de la planta para el 2021 será de 225,265 frascos de conserva de mango en almíbar, lo cual equivale a 97,990 kilogramos de pulpa de mango.

En la tabla 5.3 se muestra el número de máquinas requeridas para cubrir la demanda del proyecto en el último año.

Tabla 5.3

Cálculo del número de máquinas requeridas

<table>
<thead>
<tr>
<th>Equipo</th>
<th>C/M</th>
<th>D/M</th>
<th>Cálculo de equipos</th>
<th>Número de equipos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lavadora</td>
<td>10,752</td>
<td>3,754</td>
<td>0.35</td>
<td>1</td>
</tr>
<tr>
<td>Peladora</td>
<td>6,451</td>
<td>3,754</td>
<td>0.58</td>
<td>1</td>
</tr>
<tr>
<td>Marmita</td>
<td>5,376</td>
<td>7,509</td>
<td>1.40</td>
<td>2</td>
</tr>
<tr>
<td>Llenadora almíbar</td>
<td>5,080</td>
<td>3,754</td>
<td>0.74</td>
<td>1</td>
</tr>
<tr>
<td>Taponadora</td>
<td>12,096</td>
<td>3,754</td>
<td>0.31</td>
<td>1</td>
</tr>
<tr>
<td>Etiquetadora</td>
<td>16,128</td>
<td>3,754</td>
<td>0.23</td>
<td>1</td>
</tr>
<tr>
<td>Codificadora</td>
<td>16,128</td>
<td>3,754</td>
<td>0.23</td>
<td>1</td>
</tr>
</tbody>
</table>

Elaboración propia

Se requerirá de un equipo en las operaciones de lavado, pelado, llenado de almíbar, tapado, etiquetado y codificado. Para las operaciones de escaldado y elaboración de almíbar se requiere una marmita para cada uno de éstos procesos.

5.5. Resguardo de la calidad y/o inocuidad del producto

5.5.1. Calidad de la materia prima, de los insumos, del proceso y del producto

Respecto a la calidad de la materia prima, ésta será verificada por los operarios durante los procesos de recepción y selección, la cual deberá cumplir con las especificaciones físicas requeridas, como por ejemplo el color, tamaño, consistencia, madurez y ausencia de daños físicos (presencia de hongos, mangos “chancados”).

Durante el proceso de corte, los operarios deben asegurarse que el corte de la pulpa sea de un tamaño adecuado para el envasado en los frascos de vidrio con mayor facilidad, ya que éste será manual y el diámetro del frasco es de 8.5 centímetros.

En el escaldado, previamente el fruto ha debido pasar por el proceso de pelado y
corte, donde se analizará la pulpa en el laboratorio verificando que ésta cuente con cero impurezas y libre de microorganismos.

En el proceso de esterilizado se analizarán al azar un cierto número de frascos y tapas con la finalidad de verificar que éstos no cuenten con microorganismos.

Para la elaboración de almíbar se debe tomar en cuenta que los insumos (agua, azúcar, CMC, ácido ascórbico y ácido cítrico) no estén vencidos ni con indicios de manipulación o uso previo por terceros. Finalizada la elaboración de almíbar, éste debe estar en un rango de 16 a 20 °Brix y el pH entre 3.8 a 4.5.

Durante la elaboración de la conserva de mango en almíbar se aplicarán las normas de buenas prácticas con la finalidad de asegurar la calidad del producto. Asimismo, se le exigirá al personal lo siguiente:

- Mantener una limpieza adecuada de indumentaria y personal, no usar accesorios adicionales (aretes, collares, relojes, anillos, etc.) y aplicar buenas prácticas higiénicas durante el procesamiento de materia prima.
- Mantener el cabello recogido y cubierto totalmente con el gorro de polipropileno.
- Mantener una higiene adecuada con el uso de las botas y guantes industriales.

5.5.2. Estrategia de mejora
Es de vital importancia asegurar el proceso de elaboración del producto, para ello se realizará un análisis físico-químico y microbiológico durante el proceso de producción, primordialmente en los puntos de control y en el producto final.

Según FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura), el sistema HACCP sirve para garantizar la inocuidad de los alimentos, e identificar los peligros específicos y medidas para su control y prevención. Puede aplicarse desde el productor primario hasta el consumidor final, y deberá basarse en pruebas científicas de peligros para la salud humana.

Siguiendo los principios del proceso HACCP del Anexo 5, se ha detallado en la tabla 5.4 cuáles serían los puntos críticos de control en todo el proceso, y en base a ello se ha realizado la tabla de calidad HACCP en la tabla 5.5.
Tabla 5.4
Tabla de Puntos Críticos

<table>
<thead>
<tr>
<th>Etapa del proceso</th>
<th>Peligro</th>
<th>¿Peligro para la seguridad del alimento?</th>
<th>Justificar la decisión anterior</th>
<th>¿Qué medios preventivos pueden ser aplicables?</th>
<th>¿Es esta etapa un PCC?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recepción</td>
<td>Contaminación con elementos del ambiente</td>
<td>Sí</td>
<td>Fruta contaminada por elementos en el suelo, en descomposición</td>
<td>Controlar la calidad de la materia prima</td>
<td>No</td>
</tr>
<tr>
<td>Selección</td>
<td>Contaminación de las mesas de selección y equipos de transporte</td>
<td>No</td>
<td>Camiones contaminados por el viaje y afecta directamente a la fruta, presencia de grasa</td>
<td>Desempolvar los camiones antes de realizar la carga</td>
<td>Sí</td>
</tr>
<tr>
<td>Lavado</td>
<td>Contaminación microbiológica u organismos</td>
<td>Sí</td>
<td>El tanque de la máquina de lavado no desinfectada al inicio de cada batch</td>
<td>Personal de limpieza desinfecta diariamente las instalaciones</td>
<td>Sí</td>
</tr>
<tr>
<td>Pelado</td>
<td>Presencia de fruta sólida o cáscara de la misma</td>
<td>Sí</td>
<td>Revisar que ningún residuo (cáscara) este adherido a los mangos y pelados</td>
<td>Se revisa de manera periódica la máquina peladora</td>
<td>Sí</td>
</tr>
<tr>
<td>Corte</td>
<td>Contaminación microbiológica u organismos</td>
<td>Sí</td>
<td>Utensilios de corte y guantes del personal sucios</td>
<td>Desinfectar diariamente los utensilios de corte y guantes del personal</td>
<td>Sí</td>
</tr>
<tr>
<td>Esterilizado de frascos</td>
<td>Presencia de residuos en los frascos de vidrio</td>
<td>Sí</td>
<td>No debe haber ningún tipo de contaminante en los frascos</td>
<td>Observar que los envases se encuentren limpios</td>
<td>Sí</td>
</tr>
<tr>
<td>Escaldado</td>
<td>Contaminación de elementos patógenos</td>
<td>Sí</td>
<td>El proceso debe cumplir con los requisitos para realizar un buen escaldado</td>
<td>Control de la temperatura y tiempo para eliminar las bacterias y evitar la oxidación de la pulpa</td>
<td>Sí</td>
</tr>
<tr>
<td>Envasado de pulpa y almíbar</td>
<td>Contaminación con elementos del ambiente y residuos en la máquina</td>
<td>Sí</td>
<td>El personal debe contar con indumentaria desinfectada y limpiar la máquina al finalizar el turno</td>
<td>Revisar la limpieza y que el personal utilice la indumentaria</td>
<td>Sí</td>
</tr>
<tr>
<td>Tapado</td>
<td>Presencia de residuos en las tapas</td>
<td>Sí</td>
<td>No debe haber ningún tipo de contaminante en las tapas</td>
<td>Observar que las tapas sean desinfectadas</td>
<td>No</td>
</tr>
<tr>
<td>Etiquetado</td>
<td>Contaminación con agentes patógenos</td>
<td>No</td>
<td>No existe ninguna posibilidad de contaminación por mal etiquetado</td>
<td>Control de calidad en el producto final</td>
<td>No</td>
</tr>
<tr>
<td>Codificado</td>
<td>Contaminación con agentes patógenos</td>
<td>No</td>
<td>No existe ninguna posibilidad de contaminación por mal codificado</td>
<td>Control de calidad en el producto final</td>
<td>No</td>
</tr>
<tr>
<td>Encajado</td>
<td>Romper algún frasco</td>
<td>Sí</td>
<td>Puede quedar trozos de vidrio dentro del frasco</td>
<td>Descartar cualquier frasco que sufra una caída</td>
<td>No</td>
</tr>
</tbody>
</table>

Elaboración propia
Tabla 5.5

Tabla de Calidad HACCP

<table>
<thead>
<tr>
<th>Puntos críticos de control</th>
<th>Peligros significativos</th>
<th>Límites críticos</th>
<th>Qué</th>
<th>Cómo</th>
<th>Frecuencia</th>
<th>Quién</th>
<th>Acciones preventivas</th>
<th>Registros</th>
<th>Verificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selección</td>
<td>Fruta en mal estado o muy pequeños</td>
<td>Mayor a 9 cm de altura</td>
<td>Parámetros físicos del insumo</td>
<td>Visual</td>
<td>Siempre</td>
<td>Operario</td>
<td>Desecho</td>
<td>Registro # 1</td>
<td>Capacitación de operarios</td>
</tr>
<tr>
<td>Lavado</td>
<td>Utilización de agua no clorada</td>
<td>Agua clorada a un nivel de por lo menos 6 ppm</td>
<td>Agua clorada</td>
<td>Laboratorio</td>
<td>Siempre</td>
<td>Supervisor de calidad</td>
<td>Reproceso del insumo</td>
<td>Registro # 2</td>
<td>Control por batch</td>
</tr>
<tr>
<td>Pelado</td>
<td>Presencia de cáscara</td>
<td>Sin presencia de cáscara</td>
<td>Parámetros físicos del insumo</td>
<td>Visual</td>
<td>Siempre</td>
<td>Operario</td>
<td>Reproceso del insumo</td>
<td>Registro # 3</td>
<td>Control por unidad</td>
</tr>
<tr>
<td>Corte</td>
<td>Elementos patógenos y tamaño no adecuado</td>
<td>6.8 cm largo 2.4 cm ancho</td>
<td>Parámetros físicos del insumo</td>
<td>Visual</td>
<td>Siempre</td>
<td>Operario</td>
<td>Reproceso del producto</td>
<td>Registro # 4</td>
<td>Capacitación de operarios</td>
</tr>
<tr>
<td>Esterilizado de frascos y tapas</td>
<td>Utilización de agua no clorada</td>
<td>Agua clorada a un nivel de por lo menos 6 ppm</td>
<td>Agua clorada</td>
<td>Laboratorio</td>
<td>Siempre</td>
<td>Supervisor de calidad</td>
<td>Reproceso del insumo</td>
<td>Registro # 2</td>
<td>Control por batch</td>
</tr>
<tr>
<td>Escaldado</td>
<td>Elementos patógenos</td>
<td>Temp: 75 - 88 °C, Tiempo: 8 - 10 min</td>
<td>Parámetros de temperatura y tiempo</td>
<td>Pantalla de la máquina</td>
<td>Siempre</td>
<td>Supervisor de calidad</td>
<td>Calibración temperatura y tiempo</td>
<td>Registro # 6</td>
<td>Control por batch</td>
</tr>
<tr>
<td>Envasado de pulpa y almíbar</td>
<td>Realizar un mal pesado</td>
<td>Peso pulpa: 435 - 450 gramos Peso almíbar: 300 - 315 ml</td>
<td>Parámetros de peso</td>
<td>Balanza electrónica</td>
<td>Siempre</td>
<td>Operario</td>
<td>Reproceso del insumo</td>
<td>Registro # 7</td>
<td>Control por unidad</td>
</tr>
</tbody>
</table>

Elaboración propia
5.6. Estudio de impacto ambiental

Se realizará un estudio destinado a identificar, prevenir, predecir y valorar los efectos ambientales negativos que la producción de conserva de mango en almíbar podría causar en el entorno donde se produzcan las actividades.

Por ello se ha realizado la matriz de Leopold con la finalidad de identificar y valorar los impactos ambientales que se produzcan desde el inicio de las actividades del proyecto, como se muestra en la tabla 5.6.

Tabla 5.6

Matriz de Leopold

<table>
<thead>
<tr>
<th>ETAPAS DEL PROCESO</th>
<th>Construcción de planta</th>
<th>Película conserva</th>
<th>Lavar frutas</th>
<th>Matizar</th>
<th>Carne en almacén</th>
<th>Enlatar</th>
<th>Lavar</th>
<th>Corte</th>
<th>Enlatar</th>
<th>Esterilizar</th>
<th>Enlatar</th>
<th>Procesar</th>
<th>Enlatar</th>
<th>Enlatar</th>
<th>Enlatar</th>
<th>Enlatar</th>
<th>Codificar</th>
<th>Enlatar</th>
<th>Alineamiento Aritmético</th>
</tr>
</thead>
<tbody>
<tr>
<td>Árboles</td>
<td>-3/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-3/3</td>
<td>-4/3</td>
<td></td>
<td>-3/3</td>
<td></td>
<td></td>
<td></td>
<td>-3/3</td>
<td>-3/3</td>
<td>-3/3</td>
<td></td>
</tr>
<tr>
<td>Árboles de hoja</td>
<td>-3/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-3/3</td>
<td>-4/3</td>
<td></td>
<td>-3/3</td>
<td></td>
<td></td>
<td></td>
<td>-3/3</td>
<td>-3/3</td>
<td>-3/3</td>
<td></td>
</tr>
<tr>
<td>Malos olores</td>
<td>-3/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-3/4</td>
<td>-3/4</td>
<td></td>
<td>-3/4</td>
<td></td>
<td></td>
<td></td>
<td>-3/4</td>
<td>-3/4</td>
<td>-3/4</td>
<td></td>
</tr>
</tbody>
</table>
| Fuente: Cotán-Pinto, S. (2007)
Elaboración propia

Realizada la matriz de Leopold, se identifica que tanto en la construcción de la planta como en los procesos de pelado y corte, se deberán tomar medidas de corrección o mitigación. Asimismo se observan valores positivos dado a que el proyecto genera puestos de trabajo, lo cual crea una dinamización de la economía local.
En la tabla 5.7 se muestra la matriz de aspectos e impactos ambientales más significativos del proceso de producción, la cual permitirá tomar las medidas preventivas para cada aspecto ambiental.

Tabla 5.7
Matriz de aspectos e impactos ambientales

<table>
<thead>
<tr>
<th>Proceso</th>
<th>Aspecto ambiental</th>
<th>Impacto ambiental</th>
<th>Medidas preventivas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selección de materia prima</td>
<td>Generación de residuos orgánicos (mangos en mal estado)</td>
<td>Potencial contaminación de suelos y del aire por malos olores.</td>
<td>Implementar un sistema de gestión de residuos orgánicos para uso en abono.</td>
</tr>
<tr>
<td>Lavado de materia prima</td>
<td>Generación de afluentes.</td>
<td>Potencial contaminación del agua.</td>
<td>Uso del sistema de filtrado de agua con filtro activo de carbón.</td>
</tr>
<tr>
<td>Pelado y corte</td>
<td>Generación de residuos orgánicos (cáscara y hueso).</td>
<td>Potencial contaminación de suelos y del aire por malos olores.</td>
<td>Implementar un sistema de gestión de residuos orgánicos para uso en abono, industrias farmacéutica, cosmética y alimentaria.</td>
</tr>
<tr>
<td>Inspeccionar frascos de vidrios</td>
<td>Generación de residuos (vidrio)</td>
<td>Potencial contaminación de suelos.</td>
<td>Gestión de residuos (reciclaje)</td>
</tr>
<tr>
<td>Producción de conservas</td>
<td>Generación de ruido en todo el proceso de producción.</td>
<td>Potencial contaminación acústica.</td>
<td>Monitoreo de niveles de ruido (interno y externo) y uso de tapones de oído.</td>
</tr>
<tr>
<td>Mantenimiento de máquina</td>
<td>Generación de residuos peligrosos (aceite usado y lubricantes).</td>
<td>Potencial contaminación de suelos.</td>
<td>Colocar el aceite usado y lubricantes en recipientes herméticos, bien etiquetados y cubiertos para su posterior reciclaje a las industrias que lo requieran. (Ley General de Residuos Sólidos N° 27314, Capítulo I, Artículo 4, Inciso 3)</td>
</tr>
</tbody>
</table>

Elaboración propia

Durante el proceso de producción de conserva de mango en almíbar, el porcentaje de merma para una unidad de mango es de aproximadamente 28.3%, el cual representa a la cáscara (16%) y el hueso (12.3%).

En la industria de alimentos esta merma es considerada como residuo orgánico porque se descompone rápidamente. Por ello, en el presente proyecto se evaluará la posibilidad de que esta merma tenga un procesamiento adecuado para su posterior venta hacia industria alimentaria, cosmética, farmacéutica y abono.

Se ha señalado que la cáscara de mango contiene pectina de alta calidad. La pectina tiene la propiedad de formar geles en medio ácido y en presencia de azúcares.
Por este motivo, es utilizada en la industria alimentaria en combinación con los azúcares como un agente espesante, por ejemplo en la fabricación de mermeladas y confituras. (Sudhakar y Maini, 2000; Schieber et al., 2004)

Asimismo, en la semilla o hueso del mango se ha encontrado una importante actividad antioxidante, inclusive más alta que en la pulpa misma (Ribeiroa et al., 2008; Soong y Barlow, 2004; Maisuthisakula y Gordon, 2009). Además, por su concentración de lípidos, el aceite de la semilla del mango puede ser empleado en confitería y en la elaboración de cosméticos (Álvarez, 2004).

El aceite de la semilla de mango es una prometedora fuente de aceite comestible y ha atraído la atención debido a su perfil de ácidos grasos y triglicéridos, similar a la de la manteca de cacao, incluso usándola como sustituto de la misma.

Adicionalmente a los desechos sólidos, se debe tener en cuenta que del proceso de lavado se generan aguas residuales. La máquina lavadora multifuncional ref. 10064, considerada en el presente proyecto, cuenta con un sistema agregado de filtrado de agua con filtro activo de carbón que permite reciclar el agua ahorrando hasta un 80% de la misma.

Plan de manejo ambiental

Tiene por objetivo la defensa y protección del medio ambiente en el área de influencia, lo cual se logrará a través de la aplicación de medidas técnico-ambientales que previenen, corrigen o mitigan los impactos negativos. Se ha determinado diferentes etapas desde la construcción de la planta hasta la finalización del proyecto.

Etapas de construcción: Durante esta etapa, habrá un aumento de la contaminación acústica y atmosférica debido al uso de equipos mecánicos y maquinaria pesada para el movimiento de tierras. Por lo tanto las medidas preventivas y de mitigación a tomar en cuenta por el contratista, son que las máquinas y equipos mecánicos funcionen de manera óptima para aminorar la emisión de ruidos. Asimismo se realizará riego permanente en todas las áreas de trabajo para evitar el levantamiento de polvo en los alrededores y prohibir todo tipo de quemazón, incluyendo la de basura.

Etapas de capacitación y educación ambiental: Busca crear conciencia ambiental entre todos los involucrados (operarios, técnico y profesionales) en las distintas fases del proyecto, con la finalidad de que las actividades que desarrollen las realicen en
armonía con el medio ambiente. También se ampliará este programa a la población, relacionada con las actividades del proyecto, a fin de que se pueda minimizar los efectos negativos del funcionamiento de la planta. Por ello, la empresa buscará dar a conocer la importancia de la conservación de los recursos en la comunidad, fomentar la formación de valores y hábitos asociados a la protección de la naturaleza y finalmente promover la coordinación entre la comunidad y la compañía, para solucionar posibles problemas ambientales vinculados a la actividad industrial.

Etapa de monitoreo ambiental: Se evalúan los parámetros para llevar a cabo el seguimiento de la calidad de los diferentes factores ambientales afectados (aire, emisión de ruidos y agua). Con respecto al monitoreo de calidad del aire, se considerará los siguientes parámetros: Material Particulado en Suspensión (MPS), Dióxido de Azufre (SO2), Dióxido de Nitrógeno (NO2), Monóxido de Carbono (CO) y temperatura. Se monitorearán los niveles ambientales de ruido de acuerdo a la escala de decibeles (menor a 90 db) en el lugar del proceso de producción y otro en sus alrededores (radio de 50-100m). En lo que respecta al monitoreo de calidad de agua, los parámetros a ser monitoreados son: pH, sanidad, turbiedad y sólidos suspendidos.

Etapa de manejo de residuos: Asimismo, el presente proyecto buscará manejar los residuos orgánicos de la mejor manera, es decir desechándolos en contenedores de color naranja, mientras no se haya encontrado clientes potenciales para la venta a las industrias mencionadas anteriormente. Para ello, se debe capacitar a los trabajadores para que sepan eliminar de manera apropiada los residuos sólidos e incentivar la participación del personal en la limpieza y disposición de los residuos. Se almacenará temporalmente los residuos peligrosos y orgánicos y luego se transportará a ubicaciones adecuadas en la planta para su posterior reciclaje o eliminación.

Etapa de contingencia: El programa deberá presentar medidas y protocolos que el personal debe seguir en situaciones de emergencia. Para ello se tiene que definir las medidas y/o acciones inmediatas a seguir en caso de desastres y/o siniestros, provocados por la naturaleza o por acciones del hombre, de tal manera que ocasione el menor impacto a la salud y al ambiente, así como instalar sistemas de alerta en el área del proyecto. Ejecutar las acciones de control y rescate, durante y después de la ocurrencia de desastres. Y por último, capacitar constantemente al personal mediante cursos, charlas y prácticas de entrenamiento.
Etapa de abandono de obra: Consiste en el retiro de las infraestructuras que fueron construidas temporalmente cuando la vida útil del proyecto haya concluido, a fin de evitar efectos adversos al medio ambiente, producidos por los residuos sólidos y líquidos que puedan aparecer en el corto, mediano y largo plazo. Se deberá restaurar las áreas afectadas y procurar en lo posible mantener las condiciones originales del entorno, para evitar la generación de nuevos problemas ambientales.

5.7. Seguridad y salud ocupacional

Según Rogelio Navarro el objetivo primordial de la seguridad y salud ocupacional es la prevención ante los riesgos al trabajador, esto implica minimizar o eliminar cualquier acción que pueda causar accidentes o enfermedades.

Por ello una cultura preventiva dentro de la empresa es necesaria, desarrollando un proceso de planificación que comienza con una evaluación de los riesgos y acciones preventivas en cada puesto de trabajo dentro de la empresa de manera periódica. Además la capacitación e información permanente del alcance de los riesgos y la manera de evitarlos debe ser de conocimiento de los trabajadores. (“La organización de la prevención de riesgos laborales en la empresa”, 2007, párr.2)

Para garantizar la seguridad del personal en caso de sismos, incendio u otro incidente que involucre la evacuación de las instalaciones es necesario contar con una brigada de seguridad; la cual estará formada por los trabajadores de la planta, quienes serán capacitados en primeros auxilios y extinción de incendio.

Según el Decreto Supremo Nº 009-2005-TR, el Reglamento de Seguridad y Salud en el Trabajo tiene como objetivo promover una cultura de prevención de riesgos laborales en el país. Para ello cuenta con la participación de los trabajadores, empleadores y del Estado, quienes a través del diálogo social velarán por la promoción, difusión y cumplimiento de la normativa sobre la materia.

Para lo cual se tomará en consideración realizar una matriz IPER con los riesgos y peligros en las áreas críticas de producción como se muestra en la tabla 5.8.
Tabla 5.8
Matriz IPER

<table>
<thead>
<tr>
<th>Tarea</th>
<th>Peligro</th>
<th>Riesgo</th>
<th>Requisito Legal</th>
<th>Probabilidad</th>
<th>Índice de personas expuestas (A)</th>
<th>Índice de procedimientos de trabajo (B)</th>
<th>Índice de exposición al riesgo (C)</th>
<th>Índice de probabilidad (A+B+C+D)</th>
<th>Índice de severidad</th>
<th>Probabilidad x Severidad</th>
<th>Nivel de riesgo</th>
<th>Riesgo significativo</th>
<th>Medidas de control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selección de materias primas</td>
<td>Corte del montacargas a operados</td>
<td>Probabilidad de lesiones graves</td>
<td>DS42 FR art 85</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>14</td>
<td>MO</td>
<td>NO</td>
<td>Asegurar el perímetro cuando el montacargas esté en funcionamiento</td>
</tr>
<tr>
<td></td>
<td>Partes punzocontantes en contenedores de MP</td>
<td>Cotes en las manos</td>
<td>DS42 FR art 230</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>MO</td>
<td>NO</td>
<td>Uso de guantes de malla de acero</td>
</tr>
<tr>
<td>Lavado de materias primas</td>
<td>Pico mojado</td>
<td>Caida, probabilidad de golpes y fracturas</td>
<td>DS42 FR art 67,70</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>15</td>
<td>MO</td>
<td>NO</td>
<td>Uso de boites e instalación de piso antideslizantes. Colocar bandas antideslizantes en el área</td>
</tr>
<tr>
<td>Pelado</td>
<td>Máquina con cuchillas</td>
<td>Corte o perforación de mano</td>
<td>DS42 FR art 230</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>15</td>
<td>IM</td>
<td>SI</td>
<td>Maquinaria con bocina para poner en marcha o detenerla</td>
</tr>
<tr>
<td>Corte</td>
<td>Herramientas portapartículas</td>
<td>Cotes en las manos</td>
<td>DS42 FR art 230</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>MO</td>
<td>NO</td>
<td>Uso de guantes</td>
</tr>
<tr>
<td>Ensamblado de brancos</td>
<td>Máquina giratoria de 180°</td>
<td>Amarramiento de la mano</td>
<td>DS42 FR art 230</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>MO</td>
<td>NO</td>
<td>No utilizar guantes durante el proceso</td>
</tr>
<tr>
<td>Ensamblador</td>
<td>Partes calientes de la máquina</td>
<td>Quebraduras graves</td>
<td>DS42 FR art 463, 465</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>21</td>
<td>IM</td>
<td>SI</td>
<td>Capacitación permanente del personal</td>
</tr>
<tr>
<td>Empaquetado</td>
<td>Rotura de brancos</td>
<td>Corte con púas</td>
<td>DS42 FR art 463, 465</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>6</td>
<td>TO</td>
<td>NO</td>
<td>Uso de guantes</td>
</tr>
<tr>
<td>Tapizado</td>
<td>Máquina giratoria de 180°</td>
<td>Amarramiento de la mano</td>
<td>DS42 FR art 230</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>MO</td>
<td>NO</td>
<td>No utilizar guantes durante el proceso</td>
</tr>
<tr>
<td>Exequillado y codificado</td>
<td>Máquina en la mano</td>
<td>Quebraduras</td>
<td>DS42 FR art 463, 465</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>12</td>
<td>MO</td>
<td>NO</td>
<td>Capacitación permanente del personal</td>
</tr>
</tbody>
</table>

Elaboración propia
5.8. Sistema de mantenimiento

Para disminuir la probabilidad de falla de los equipos se debe tener un adecuado plan de mantenimiento con el objetivo de prevenir paradas inesperadas de planta, evitando mayores costos en la reparación de los equipos. Asimismo se evita el no lograr los volúmenes de venta necesarios para solventar los gastos de la empresa.

Una adecuada planificación del mantenimiento requiere del control permanente de las instalaciones, así como la supervisión de los trabajos de reparación y revisión de las máquinas para garantizar su funcionamiento continuo.

Para preveer y anticiparse a los fallos de las máquinas es necesario el mantenimiento preventivo, que involucran reparaciones, el cambio periódico de algunos repuestos, aceite, lubricante, etc., siguiendo un calendario específico para cada equipo.

Por otro lado, el mantenimiento reactivo se realiza cuando el daño ya se ha dado en la máquina, por lo que el personal a cargo deberá parar la producción y corregir la falla.

Se deberá tomar en cuenta máquinas y equipos que requieren mayor supervisión como es el caso de la llenadora de almíbar y la marmita, ya que éstas trabajan cerca a su máxima capacidad. Se debe tener en cuenta que existen diferentes formatos en cuanto a las plantillas utilizadas para el mantenimiento de todas las máquinas, ya que cada una es diferente y necesita diferentes tipos de repuestos.

Una vez realizado el mantenimiento de las máquinas, los aceites y lubricantes que han sido retirados de éstas, se colocarán en recipientes herméticos, bien etiquetados y cubiertos, los cuales se dispondrán en lugares adecuados para su posterior reciclaje a las industrias que lo requieran.

A continuación se muestra el programa de mantenimiento anual realizado a la llenadora de almíbar y la marmita en las tablas 5.9 y 5.10.
Tabla 5.9

Programa de mantenimiento preventivo para llenadora de almíbar

<table>
<thead>
<tr>
<th>Ficha técnica de inspección y mantenimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre</td>
</tr>
<tr>
<td>Marca</td>
</tr>
<tr>
<td>Modelo</td>
</tr>
<tr>
<td>Operador</td>
</tr>
<tr>
<td>Características técnicas</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Periodicidad del mantenimiento</th>
<th>1 mes</th>
<th>3 meses</th>
<th>6 meses</th>
<th>12 meses</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Intervenciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecha</td>
</tr>
<tr>
<td>12/01/2018</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>12/01/2018</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Elaboración propia
Programa de mantenimiento preventivo para la marmita

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Marmita con agitador</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marca</td>
<td>Vulcano</td>
</tr>
<tr>
<td>Modelo</td>
<td>MRV 300 - I/C</td>
</tr>
<tr>
<td>Operador</td>
<td>P.F</td>
</tr>
</tbody>
</table>

Características técnicas

- **Voltaje:** 220 / 380 V
- **Potencia:** 1.5 HP (1.12 kW)
- **Frecuencia:** 50 - 60 Hz

Periodicidad del mantenimiento

- **Anual (12 meses)**

Intervenciones

<table>
<thead>
<tr>
<th>Fecha</th>
<th>Actividad / Procedimiento</th>
<th>Lista de repuestos / Herramientas</th>
<th>Interventor</th>
</tr>
</thead>
</table>
| 12/01/2018 | Cambio de aceite del motor | - Desconectar el equipo y cortar la corriente eléctrica.
 - Quitar la tapa y guarda del motor.
 - Verificar el estado del aceite en el reductor.
 - Vacia el aceite si está en mal estado.
 - Colocar el aceite a su nivel indicado.
 - Colocar la tapa y guarda del motor.
 - 1 galón de aceite liviano.
 - 1 llave Nº 12.
 - 1 destornillador plano.
 - 1 llave hexagonal 8 mm.
 - 1 llave hexagonal 6 mm. | Pasante |
| 12/01/2018 | Cambio de empaques | - Desconectar el equipo y cortar la corriente eléctrica.
 - Quitar la tapa de los empaques.
 - Quitar el empaque de bomba y placa que se desea cambiar y colocar el nuevo empaque.
 - Colocar la tapa de empaques.
 - Empaques de bomba nuevos.
 - Empaques de placa nuevos.
 - 1 llave Nº 12.
 - 1 destornillador plano.
 - 1 destornillador estrella. | Pasante |

Elaboración propia
5.9. Programa de producción

5.9.1. Factores para la programación de la producción

Los factores de producción son los diferentes recursos que una empresa utiliza para producir bienes y servicios de manera exitosa. En la figura 5.12 se pueden observar algunos de ellos.

Figura 5.12
Factores de la producción

Trabajo

Comienza con la puesta en marcha de la empresa, dando inicio al ciclo de operaciones. Este factor posee recursos humanos de formación superior, medio y básico en diferentes niveles de la empresa, quienes percibirán una remuneración por el trabajo realizado. (Alejandro Jáuregui, 2002, pár.9).

Las competencias transversales que la empresa debe implementar en la fuerza laboral, deben ser la de responsabilidad, la cual es el compromiso de cada colaborador y el trabajo en equipo para resolver conflictos.
Capital

Para que la puesta en marcha de la empresa se concrete, es fundamental el capital, ya que sin éste no es viable realizar el proceso de producción. (Alejandro Jáuregui, 2002, párr.3).

Información

Existen dos tipos de conocimientos, el explícito el cual se encuentra en documentos, procedimientos, bases de datos de información, etc. y el tácito que es la acumulación de experiencia de los trabajadores.

El objetivo de cualquier empresa debería ser convertir el conocimiento tácito en explícito para tener una visión más clara y comprensible del mismo con la finalidad de cumplir los objetivos de la empresa. (Mercedes Moreira, 2012, párr.28).

Tecnología

A través del mejoramiento tecnológico, la humanidad ha mejorado sus procesos de producción cada día, diversificando y ampliando sus horizontes, con la finalidad de cumplir con sus objetivos. (Alejandro Jáuregui, 2002, párr.13).

Interés

El interés es todo aquel provecho, utilidad o lucro producido por el capital. (Alejandro Jáuregui, 2002, párr.5).

Materiales

Para obtener los bienes y servicios que requiere el mercado, dependerá de conseguir los materiales más adecuados que cumplan con ciertas características (tamaño, forma, volumen, peso y características físicas y químicas de los mismos).

Para elaborar un producto de calidad los métodos de producción, manipulación y almacenamiento deben ser los más adecuados. (“Diseño de sistemas productivos y logísticos”, 2009, párr. 43).
5.9.2. Programa de producción

Para la producción de la vida útil del proyecto se necesita saber la cantidad de frascos de conserva de mango en almíbar a ser vendidas. Para programar el acabo de productos se hace uso de un calendario maestro de producción con fechas límite de entrega, con la finalidad de evitar demoras, ser eficientes en la capacidad de producción, contar con un stock de seguridad y obtener menores costos de producción. (“Preparación del plan de producción”, 2008, párr.3).

Se contará con un stock de seguridad debido a que se está considerando que el proveedor tenga un retraso de 1 semana en el envío de mango Kent. Dado que en el primer año se producen 12,172 frascos/mes, un retraso de una semana laborable implicaría no producir 3,043 frascos.

A continuación se detalla el programa de producción de la planta durante los 5 años del proyecto, según la tabla 5.11.

Tabla 5.11
Programa de producción anual de pulpa de mango

<table>
<thead>
<tr>
<th></th>
<th>Año 1</th>
<th>Año 2</th>
<th>Año 3</th>
<th>Año 4</th>
<th>Año 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demanda Total</td>
<td>146,061</td>
<td>165,862</td>
<td>185,663</td>
<td>205,464</td>
<td>225,265</td>
</tr>
<tr>
<td>Inventario Inicial</td>
<td>-</td>
<td>3,043</td>
<td>3,455</td>
<td>3,868</td>
<td>4,280</td>
</tr>
<tr>
<td>Producción requerida</td>
<td>149,104</td>
<td>166,274</td>
<td>186,076</td>
<td>205,876</td>
<td>225,678</td>
</tr>
<tr>
<td>Inventario final</td>
<td>3,043</td>
<td>3,455</td>
<td>3,868</td>
<td>4,280</td>
<td>4,693</td>
</tr>
</tbody>
</table>

Elaboración propia

5.10. Requerimiento de insumos, servicios y personal

5.10.1. Materia prima, insumos y otros materiales

La materia prima principal del proceso productivo para el proyecto es el mango, el cual se obtendrá principalmente de Lima. Los otros insumos necesarios para elaborar la conserva de mango en almíbar es el CMC (Carboximetil Celulosa), ácido ascórbico, ácido cítrico, agua y azúcar. En lo que respecta a materiales, se requiere tapas metálicas tipo twist-off, frascos de vidrio, etiquetas, cajas y otros. En las tablas 5.12 y 5.13 se
observa el requerimiento de materia prima e insumos, así como los materiales requeridos para el proceso de producción durante los 5 años del proyecto.

Tabla 5.12
Requerimiento de materia prima e insumos en kilogramos

<table>
<thead>
<tr>
<th>Año</th>
<th>Mango en bruto</th>
<th>Agua</th>
<th>Azúcar</th>
<th>Ácido ascórbico</th>
<th>Ácido cítrico</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>88,630</td>
<td>30,676</td>
<td>13,166</td>
<td>44.0</td>
<td>88.0</td>
</tr>
<tr>
<td>2018</td>
<td>100,646</td>
<td>34,835</td>
<td>14,951</td>
<td>50.0</td>
<td>100.0</td>
</tr>
<tr>
<td>2019</td>
<td>112,661</td>
<td>38,994</td>
<td>16,736</td>
<td>56.0</td>
<td>111.9</td>
</tr>
<tr>
<td>2020</td>
<td>124,676</td>
<td>43,152</td>
<td>18,520</td>
<td>61.9</td>
<td>123.8</td>
</tr>
<tr>
<td>2021</td>
<td>136,691</td>
<td>47,311</td>
<td>20,305</td>
<td>69.0</td>
<td>135.8</td>
</tr>
</tbody>
</table>

Elaboración propia

Tabla 5.13
Requerimiento de materiales en unidades

<table>
<thead>
<tr>
<th>Año</th>
<th>Frascos requeridos</th>
<th>Etiquetas requeridas</th>
<th>Tapas requeridas</th>
<th>Cajas de 10 unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>146,061</td>
<td>146,061</td>
<td>146,061</td>
<td>14,606</td>
</tr>
<tr>
<td>2018</td>
<td>165,862</td>
<td>165,862</td>
<td>165,862</td>
<td>16,586</td>
</tr>
<tr>
<td>2019</td>
<td>185,663</td>
<td>185,663</td>
<td>185,663</td>
<td>18,566</td>
</tr>
<tr>
<td>2020</td>
<td>205,464</td>
<td>205,464</td>
<td>205,464</td>
<td>20,546</td>
</tr>
<tr>
<td>2021</td>
<td>225,265</td>
<td>225,265</td>
<td>225,265</td>
<td>22,526</td>
</tr>
</tbody>
</table>

Elaboración propia

Para hallar los requerimientos de materia prima e insumos se necesitó el balance de materia en el que se especifican las cantidades de insumos necesarios para obtener el producto final.

5.10.2. Servicios: energía eléctrica, agua, vapor, combustible, etc.

Se ha considerado analizar el consumo de agua y energía eléctrica que se va utilizar anualmente en la producción de la conserva de mango en almíbar.

En relación al agua, se ha tomado en cuenta la cantidad que se va a consumir durante las operaciones de lavado, escaldado y esterilizado de frascos y tapas. Para las operaciones de lavado y esterilizado de frascos y tapas, se hará uso de agua clorada a un nivel de por lo menos 6 partes por millón, ya que DIGESA considera como agua aceptable entre los valores de 4.1 – 7.9 ppm. Adicional a ello se tomará en cuenta el...
consumo de agua del personal de planta y administrativo para los servicios higiénicos.

En la tabla 3.4 (Costo de servicio agua potable – Lima), se especifica que el precio por metro cúbico de agua es de S/. 4.86 para un rango de 0-1000 m³ mensuales.

A continuación en la tabla 5.14 se detalla el consumo y costo total anual que se incurre por el servicio de agua.

Tabla 5.14

Consumo anual de agua

<table>
<thead>
<tr>
<th>Año</th>
<th>Consumo lavado (m³)</th>
<th>Consumo esterilizado (m³)</th>
<th>Consumo escaldado (m³)</th>
<th>Consumo oficinas y planta (m³)</th>
<th>Consumo total de agua (m³)</th>
<th>Costo total (S/.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>209.88</td>
<td>94.94</td>
<td>63.54</td>
<td>740.74</td>
<td>1,109.10</td>
<td>5,390.21</td>
</tr>
<tr>
<td>2018</td>
<td>238.33</td>
<td>107.81</td>
<td>72.15</td>
<td>740.74</td>
<td>1,159.03</td>
<td>5,632.90</td>
</tr>
<tr>
<td>2019</td>
<td>266.79</td>
<td>120.68</td>
<td>80.76</td>
<td>740.74</td>
<td>1,208.97</td>
<td>5,875.59</td>
</tr>
<tr>
<td>2020</td>
<td>295.24</td>
<td>133.55</td>
<td>89.38</td>
<td>740.74</td>
<td>1,258.91</td>
<td>6,118.29</td>
</tr>
<tr>
<td>2021</td>
<td>323.69</td>
<td>146.42</td>
<td>97.99</td>
<td>740.74</td>
<td>1,308.84</td>
<td>6,360.98</td>
</tr>
</tbody>
</table>

Fuente: Superintendencia Nacional de Servicios de Saneamiento, SEDAPAL. (2016)
Elaboración propia

Energía eléctrica

Se ha considerado para el consumo de energía eléctrica, el funcionamiento de las maquinarias del proceso productivo y el consumo en el resto de instalaciones de la planta y oficinas administrativas, por los años del proyecto como se muestra en la tabla 5.15. En cuanto al precio de kW.h se está considerando un incremento de 3% anual en la tarifa eléctrica.
Tabla 5.15
Consumo anual de energía eléctrica en planta (S/.)

| Año | Lavador de fruta 3.18 kW.h | Peladora de mango 1.65 kW.h | Marmita 1.12 kW.h | Esterilizadora 1.00 kW.h | Llenadora de almíbar 2.00 kW.h | Taponadora 0.5 kW.h | Etiquetadora 0.95 kW.h | Codificadora 0.12 kW.h | Luz en planta y oficinas 3.2 kW.h | Tarifa S/., Consumo total anual S/.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>3,205</td>
<td>1,663</td>
<td>1,129</td>
<td>1,008</td>
<td>2,016</td>
<td>504</td>
<td>958</td>
<td>121</td>
<td>3,226</td>
<td>3.93</td>
</tr>
<tr>
<td>2018</td>
<td>3,205</td>
<td>1,663</td>
<td>1,129</td>
<td>1,008</td>
<td>2,016</td>
<td>504</td>
<td>958</td>
<td>121</td>
<td>3,226</td>
<td>4.05</td>
</tr>
<tr>
<td>2019</td>
<td>3,205</td>
<td>1,663</td>
<td>1,129</td>
<td>1,008</td>
<td>2,016</td>
<td>504</td>
<td>958</td>
<td>121</td>
<td>3,226</td>
<td>4.17</td>
</tr>
<tr>
<td>2020</td>
<td>3,205</td>
<td>1,663</td>
<td>1,129</td>
<td>1,008</td>
<td>2,016</td>
<td>504</td>
<td>958</td>
<td>121</td>
<td>3,226</td>
<td>4.29</td>
</tr>
<tr>
<td>2021</td>
<td>3,205</td>
<td>1,663</td>
<td>1,129</td>
<td>1,008</td>
<td>2,016</td>
<td>504</td>
<td>958</td>
<td>121</td>
<td>3,226</td>
<td>4.42</td>
</tr>
</tbody>
</table>

Elaboración propia
5.10.3. Determinación del número de operarios y trabajadores indirectos

Dentro del área de producción se ha determinado la cantidad de operarios necesarios para los distintos procesos de elaboración del producto, considerando si la tarea es realizada manualmente por el operario o con una máquina. En las tablas 5.16 y 5.17 se muestran los procesos y cantidad de operarios que trabajarán en las distintas áreas de producción y áreas administrativas respectivamente.

Tabla 5.16
Cantidad de operarios en área de producción

<table>
<thead>
<tr>
<th>Procesos</th>
<th>Número de operarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seleccionado</td>
<td>2</td>
</tr>
<tr>
<td>Lavado</td>
<td>2</td>
</tr>
<tr>
<td>Pelado</td>
<td>1</td>
</tr>
<tr>
<td>Cortado</td>
<td>2</td>
</tr>
<tr>
<td>Escaldado</td>
<td>2</td>
</tr>
<tr>
<td>Esterilizado</td>
<td>1</td>
</tr>
<tr>
<td>Envasado</td>
<td>2</td>
</tr>
<tr>
<td>Taponado</td>
<td>1</td>
</tr>
<tr>
<td>Etiquetado</td>
<td>1</td>
</tr>
<tr>
<td>Codificado</td>
<td>1</td>
</tr>
<tr>
<td>Encajado</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
</tr>
</tbody>
</table>

Tabla 5.17
Trabajadores en el Área administrativa

<table>
<thead>
<tr>
<th>Puestos</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervisor Producción</td>
<td>1</td>
</tr>
<tr>
<td>Supervisor Logística</td>
<td>1</td>
</tr>
<tr>
<td>Supervisor Operaciones</td>
<td>1</td>
</tr>
<tr>
<td>Analista Comercial y Finanzas</td>
<td>1</td>
</tr>
<tr>
<td>Analista de Marketing y Recursos Humanos</td>
<td>1</td>
</tr>
<tr>
<td>Supervisor Calidad</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
</tr>
</tbody>
</table>

Elaboración Propia
5.10.4. Servicios de terceros

Se contratará el servicio de limpieza de la planta y áreas administrativas, para ello se necesitarán 2 personas para todo el local.

Se ha considerado también contratar el servicio de vigilancia, específicamente 2 vigilantes que se encarguen de la seguridad en 2 turnos (día y noche).

También se contratará el servicio de transporte para el acopio del mango, la cual tiene operaciones en la región de Lima. Esta se encargará del recojo de la materia prima desde los centros mayoristas hacia el área de almacenamiento de la planta, siendo 2 personas los encargados. Adicional a ellos, se contará con un servicio de transporte para la distribución del producto final hacia los puntos de venta.

Finalmente se requerirá de un técnico de mantenimiento de la planta. Por último, se contratará un servicio para realizar las degustaciones de la conserva de mango en almíbar en los puntos de venta objetivo del producto. En la tabla 5.18 se detalla los diferentes servicios de tercerización, así como la cantidad de personas requeridas.

Tabla 5.18

<table>
<thead>
<tr>
<th>Tercerización</th>
<th>Personal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limpieza</td>
<td>2</td>
</tr>
<tr>
<td>Vigilancia</td>
<td>2</td>
</tr>
<tr>
<td>Transporte (mayorista-planta)</td>
<td>2</td>
</tr>
<tr>
<td>Transporte (planta-centros distribución)</td>
<td>3</td>
</tr>
<tr>
<td>Técnico mantenimiento</td>
<td>1</td>
</tr>
<tr>
<td>Degustaciones</td>
<td>2</td>
</tr>
<tr>
<td>Elaboración propia</td>
<td></td>
</tr>
</tbody>
</table>

5.11. Disposición de planta

5.11.1. Características físicas del proyecto

Factor edificio

“Los edificios deben construirse de manera que los ambientes interiores se comuniquen entre sí de manera que la luz y ventilación no se obstruyan. Los edificios deben ser
construidos de acuerdo a las necesidades del proceso productivo o servicio, considerando ampliaciones a futuro.” (Díaz, Jarufe y Noriega, 2007, p.204).

Pisos

Los pisos de un establecimiento alimentario han de ser impermeables, lavables y antideslizantes. No deben tener grietas o hendiduras para evitar la acumulación de suciedad y la proliferación de microorganismos. En caso necesario, tendrán una pequeña inclinación que facilite la evacuación de líquidos hacia un desagüe (“Unidad 4: Limpieza, Desinfección y Control de Plagas”, 2007, párr.3).

Paredes

Las paredes deben ser lisas, con materiales no absorbentes, de color claro y lavables. Es recomendable que para facilitar la limpieza, los ángulos entre paredes y entre éstas y los pisos o los techos se encuentren redondeados (“Manual de Buenas Prácticas”, 2013, pág.28).

Vías de circulación

Las vías de circulación deben ser diseñadas de manera que los trabajadores y medios de acarreo puedan circular de manera segura, cuyas dimensiones varián de acuerdo al número de trabajadores, cuyo ancho del pasillo o zona de paso no será menor a 80 centímetros” (Díaz, Jarufe y Noriega, 2007, p.205)

Techos

Los techos deben construirse con materiales que impidan la acumulación de suciedad y reduzcan al máximo la condensación de vapor y la aparición de humedades. Es recomendable que los techos sean construidos a una altura mínima de tres metros desde el piso. (“Unidad 4: Limpieza, Desinfección y Control de Plagas”, 2007, párr.5).

Ventanas y otras aberturas

Deben construirse con un formato que evite la acumulación de suciedad y facilite la limpieza. Las aberturas que comunican con el exterior deben estar provistas
de protección antiplagas (moscas, roedores y pájaros) de fácil conservación. (‘‘Manual de Buenas Prácticas’, 2013, pág.29)

Puertas

‘‘Las puertas regulan el ruido y la visibilidad, brindan protección contra el clima, dan acceso a los espacios y permiten la evacuación en caso de incendios. Una puerta de oficina debe tener 90 cm de ancho o más, en caso sea menor siempre creará problemas. Para los servicios sanitarios, se recomiendan puertas de 80 cm de ancho. Las puertas exteriores deberán tener un mínimo de 1,2 m si el número de trabajadores durante la jornada no excede de 50. Para las puertas de garaje se recomienda un mínimo de 3 m. Por seguridad, las puertas se deben abrir hacia afuera de los edificios y corredores.’’ (Díaz, Jarufe y Noriega, 2007, p.208).

Instalaciones del personal

Las zonas de manipulación de alimentos no deben compartir la misma área con baños, vestuarios y cuartos de aseo. Además deberán tener buena iluminación, ventilación y cierres automáticos en las puertas. Deben disponer de agua fría y caliente, contar con jabón y elementos para el secado de manos (toallas descartables o secadores de aire caliente), contar con dispositivos para eliminar los elementos desechables en forma segura e higiénica. (‘‘Manual de Buenas Prácticas’, 2013, pág.29)

Factor servicio

Servicios relativos al personal

Un buen ambiente de trabajo es indispensable para que una empresa tenga éxito, ya que si existe desorden, suciedad, así como condiciones físicas y psicológicas adversas, conllevara a la deficiente calidad en el trabajo. (Díaz, Jarufe y Noriega, 2007, p.247).

Instalaciones sanitarias

Los servicios higiénicos son fundamentales para garantizar el bienestar de los trabajadores, es así que la tabla 5.19 muestra el número adecuado de inodoros según OSHA (Occupational Safety and Health Administration). Los baños deben estar
proveídos de lavamanos, espejos, basureros, jabón líquido, papel higiénico, etc.

Tabla 5.19

Número adecuado de inodoros por número de personas

<table>
<thead>
<tr>
<th>Número de empleados</th>
<th>Número mínimo W.C.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 15</td>
<td>1</td>
</tr>
<tr>
<td>16 - 35</td>
<td>2</td>
</tr>
<tr>
<td>36 - 55</td>
<td>3</td>
</tr>
<tr>
<td>56 - 80</td>
<td>4</td>
</tr>
<tr>
<td>81 - 110</td>
<td>5</td>
</tr>
<tr>
<td>111 - 150</td>
<td>6</td>
</tr>
<tr>
<td>Más de 150</td>
<td>Un accesorio adicional por cada 40 empleados</td>
</tr>
</tbody>
</table>

Elaboración propia

Vías de acceso

“Se deben tener en cuenta las salidas de emergencia; se requerirá de un mínimo de 0.80 m de ancho por cada 1000 m² de área construida en el primer piso, y las diferentes salidas deberán ubicarse, de ser posible, en lugares distantes y opuestos. Los pasajes tendrán un ancho mínimo de 1,20 m, para los primeros 1000 m² de área servida. Este ancho será incrementado en 0.30 m por cada 1000 m² adicionales de área servida” (Díaz, Jarufe y Noriega, 2007, p.235).

Servicios médicos y de alimentación

Es fundamental que la empresa cuente con un botiquín de primeros auxilios para responder a cualquier emergencia menor. La empresa debe contar con un área de alimentación para que los trabajadores puedan calentar sus alimentos.

Iluminación

Se recomienda que exista las áreas sean iluminadas con luz natural complementada con iluminación artificial. La iluminación natural se realiza a través de
ventanas en techos, que proporcionan iluminación casi uniforme. (“Manual de Buenas Prácticas”, 2013, pág.29)

Ventilación

Una buena ventilación permitirá evitar el exceso de calor, la condensación de vapor y polvo. Todos los huecos y ventanas deben estar protegidos por mallas tupidas para evitar la entrada de insectos, aves y otros animales que puedan contaminar los alimentos. (“Unidad 4: Limpieza, Desinfección y Control de Plagas”, 2007, párr.23).

Servicios relativos al material

La empresa capacitará a los operarios para guardar los más altos estándares de calidad posibles. Se contará con un laboratorio para realizar las pruebas químicas, físicas, microbianas, entre otras. Siendo necesario diferentes herramientas e instrumentos para cada tipo de prueba.

En la mayoría de los procesos industriales esta merma es considerada como desecho debido a que es un residuo orgánico que se descompone rápidamente. Por ello, en el presente proyecto se evaluará la posibilidad de que esta merma tenga un procesamiento adecuado para su posterior venta hacia industria alimentaria, cosmética, farmacéutica o abonos tal como se detalló en el estudio de impacto ambiental.

Servicios relativos a la maquinaria

Instalaciones eléctricas

“La instalación eléctrica deberá realizarse de acuerdo con los requerimientos de la planta de modo que no ofrezcan peligro de incendio o de explosión y que las personas que manipulen equipos eléctricos se encuentren protegidas contra riesgos de accidentes causados por contactos directos o indirectos. Por ello, será importante realizar una revisión de los requerimientos técnicos de la maquinaria y equipo”. (Díaz, Jarufe y Noriega, 2007, p.243).

Equipos y utensilios

Además se debe tener en cuenta el material de construcción de los equipos. Todas las partes que puedan estar en contacto con el alimento no deben ser
contaminantes. La mayoría de los equipos disponibles en la actualidad son de acero inoxidable, el cual combina una buena resistencia química y mecánica.

Se contará con un depósito de herramientas, el cual debe contar con un control de inventario para conocer el stock de herramientas y evitar pérdidas o robos.

5.11.2. Determinación de las zonas físicas requeridas

Se puede definir la distribución en planta como la ubicación de las distintas máquinas, puestos de trabajo, áreas de servicio al cliente, almacenes, oficinas, zonas de descanso, pasillos, flujos de materiales y personas, etc. dentro de los edificios y recintos de la empresa, de forma que se consiga el mejor funcionamiento de las instalaciones y se logren alcanzar los objetivos establecidos por la organización. (“Tema 7: La decisión de distribución física de las instalaciones”, 2010, párr.4).

Entre los objetivos básicos a alcanzar mediante la distribución en planta podemos señalar:

- Optimizar la capacidad productiva.
- Reducir los costos de movimiento de materiales.
- Proporcionar espacios suficientes para los distintos procesos.
- Optimizar el aprovechamiento de la mano de obra, la maquinaria y el espacio.
- Incrementar el grado de flexibilidad.
- Garantizar la salud y seguridad de los trabajadores.
- Facilitar la supervisión de las tareas y las actividades de mantenimiento.
- Mejorar el aspecto de las instalaciones de trabajo de cara al público.
- Mejorar la satisfacción del personal.

Las zonas dentro de la planta son: zona de recepción de materia prima e insumos, zona de selección y lavado de materia prima e insumos, zona de lavado de indumentaria del personal, zona de producción, laboratorio de calidad, comedor, oficinas administrativas, vestidores del personal de planta, servicios higiénicos de personal de planta, administrativos y visitantes, estacionamiento y patio de maniobras, zona de vigilancia y seguridad, zona de almacenamiento de insumos y zona de almacenamiento de productos terminados.
5.11.3. Cálculo de áreas para cada zona

Se utilizará el Método de Guerchet para el cálculo de estas superficies. Para determinar el área total se sumará las tres superficies parciales (Superficie Estática, Superficie de Gravitación y Superficie de Evolución) como se muestra en la tabla 5.20.

Tabla 5.20

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Descripción del parámetro</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Cantidad de elementos requeridos</td>
</tr>
<tr>
<td>N</td>
<td>Número de lados de utilizados</td>
</tr>
<tr>
<td>SS</td>
<td>Superficie estática= largo x ancho</td>
</tr>
<tr>
<td>SG</td>
<td>Superficie gravitacional = SS x N</td>
</tr>
<tr>
<td>K</td>
<td>Coeficiente de superficie evolutiva = 0.5 x (hm/hf)</td>
</tr>
<tr>
<td>hm</td>
<td>Promedio de equipos móviles</td>
</tr>
<tr>
<td>hf</td>
<td>Promedio de equipos fijos</td>
</tr>
<tr>
<td>SE</td>
<td>Superficie evolutiva = k x (SS + SG)</td>
</tr>
<tr>
<td>ST</td>
<td>Superficie total = n x (SS + SG + SE)</td>
</tr>
</tbody>
</table>

Elaboración propia

Se definirá cada una de estas superficies:
- Superficie estática: se refiere al área que ocupan las máquinas y equipos en sí.
- Superficie de gravitación: se refiere al área que ocuparía el operario y el material de acopio.
- Superficie de evolución: es el espacio reservado entre los puestos de trabajo para los desplazamientos del personal, del equipo, de los medios de transporte y para la salida del producto terminado. Para este cálculo se utiliza un factor “k” denominado coeficiente de evolución, que presenta una medida ponderada de la relación entre las alturas de los elementos móviles y los elementos estático.

De la tabla 5.21 a la 5.36, se detallan los parámetros para determinar las dimensiones de cada área en metros y el área teórica total de la planta.
Área de zona de recepción de materia prima e insumos

Tabla 5.21

<table>
<thead>
<tr>
<th>Elemento</th>
<th>n</th>
<th>N</th>
<th>Largo (l)</th>
<th>Ancho (a)</th>
<th>Altura (h)</th>
<th>Ss</th>
<th>Sg</th>
<th>Se</th>
<th>S Total</th>
<th>S Total x n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elementos móviles</td>
<td></td>
</tr>
<tr>
<td>Encargado de almacén</td>
<td>2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>1.65</td>
<td>0.5</td>
<td>x</td>
<td>0.769</td>
<td>1.27</td>
<td>2.54</td>
</tr>
<tr>
<td>Montacargas</td>
<td>1</td>
<td>1</td>
<td>1.7</td>
<td>1.2</td>
<td>4.5</td>
<td>2.04</td>
<td>2.04</td>
<td>6.27</td>
<td>10.35</td>
<td>10.4</td>
</tr>
<tr>
<td>Elementos fijos</td>
<td></td>
</tr>
<tr>
<td>Contenedores</td>
<td>6</td>
<td>2</td>
<td>1.5</td>
<td>1</td>
<td>1.5</td>
<td>3</td>
<td></td>
<td>6.92</td>
<td>11.42</td>
<td>68.5</td>
</tr>
</tbody>
</table>

Superficie Total (m²) **81.4**

Área de zona de selección de materia prima e insumos

Tabla 5.22

<table>
<thead>
<tr>
<th>Elemento</th>
<th>n</th>
<th>N</th>
<th>Largo (l)</th>
<th>Ancho (a)</th>
<th>Altura (h)</th>
<th>Ss</th>
<th>Sg</th>
<th>Se</th>
<th>S Total</th>
<th>S Total x n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elementos móviles</td>
<td></td>
</tr>
<tr>
<td>Operarios</td>
<td>4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>1.65</td>
<td>0.5</td>
<td>x</td>
<td>0.434</td>
<td>0.93</td>
<td>3.74</td>
</tr>
<tr>
<td>Elementos fijos</td>
<td></td>
</tr>
<tr>
<td>Mesas</td>
<td>4</td>
<td>2</td>
<td>1.5</td>
<td>1.2</td>
<td>0.9</td>
<td>1.8</td>
<td>3.6</td>
<td>4.69</td>
<td>10.09</td>
<td>40.36</td>
</tr>
<tr>
<td>Contenedores</td>
<td>1</td>
<td>2</td>
<td>1.5</td>
<td>1</td>
<td>1.5</td>
<td>3</td>
<td>3.91</td>
<td>8.41</td>
<td>8.41</td>
<td></td>
</tr>
</tbody>
</table>

Superficie Total (m²) **52.50**

Elaboración propia
Tabla 5.23
Área de zona de producción

<table>
<thead>
<tr>
<th>Zona de producción</th>
<th>Elemento</th>
<th>n</th>
<th>N</th>
<th>Largo (l)</th>
<th>Ancho (a)</th>
<th>Altura (h)</th>
<th>Ss</th>
<th>Sg</th>
<th>Se</th>
<th>S Total</th>
<th>S Total x n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Elementos móviles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operarios</td>
<td>13</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>1.65</td>
<td>0.5</td>
<td>x</td>
<td>0.281</td>
<td>0.78</td>
<td>10.15</td>
</tr>
<tr>
<td></td>
<td>Elementos fijos</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mesas</td>
<td>2</td>
<td>4</td>
<td>0.7</td>
<td>0.6</td>
<td>0.9</td>
<td>0.42</td>
<td>1.68</td>
<td>1.18</td>
<td>3.28</td>
<td>6.56</td>
</tr>
<tr>
<td></td>
<td>Mesas para frascos</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>1.5</td>
<td>0.9</td>
<td>3</td>
<td>12</td>
<td>8.43</td>
<td>23.43</td>
<td>46.86</td>
</tr>
<tr>
<td></td>
<td>Peladora de mango</td>
<td>1</td>
<td>1</td>
<td>2.8</td>
<td>2.1</td>
<td>1.7</td>
<td>5.88</td>
<td>5.88</td>
<td>6.61</td>
<td>18.37</td>
<td>18.37</td>
</tr>
<tr>
<td></td>
<td>Marmita</td>
<td>2</td>
<td>2</td>
<td>0.95</td>
<td>1.05</td>
<td>2.1</td>
<td>0.865</td>
<td>1.73</td>
<td>1.46</td>
<td>4.06</td>
<td>8.11</td>
</tr>
<tr>
<td></td>
<td>Máquina esterilizadora</td>
<td>1</td>
<td>1</td>
<td>2.5</td>
<td>1.5</td>
<td>1.9</td>
<td>3.75</td>
<td>3.75</td>
<td>4.22</td>
<td>11.72</td>
<td>11.72</td>
</tr>
<tr>
<td></td>
<td>Llenadora de almíbar</td>
<td>1</td>
<td>1</td>
<td>1.7</td>
<td>0.98</td>
<td>1.65</td>
<td>1.666</td>
<td>1.67</td>
<td>1.87</td>
<td>5.20</td>
<td>5.20</td>
</tr>
<tr>
<td></td>
<td>Máquina taponadora</td>
<td>1</td>
<td>1</td>
<td>2.1</td>
<td>1.6</td>
<td>1.9</td>
<td>3.36</td>
<td>3.36</td>
<td>3.78</td>
<td>10.50</td>
<td>10.50</td>
</tr>
<tr>
<td></td>
<td>Máquina etiquetadora</td>
<td>1</td>
<td>1</td>
<td>2.3</td>
<td>1.4</td>
<td>1.8</td>
<td>3.22</td>
<td>3.22</td>
<td>3.62</td>
<td>10.06</td>
<td>10.06</td>
</tr>
<tr>
<td></td>
<td>Máquina codificadora</td>
<td>1</td>
<td>1</td>
<td>0.27</td>
<td>0.26</td>
<td>0.36</td>
<td>0.07</td>
<td>0.07</td>
<td>0.08</td>
<td>0.22</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>Llenadora de almíbar</td>
<td>1</td>
<td>2</td>
<td>2.05</td>
<td>0.9</td>
<td>1.35</td>
<td>1.845</td>
<td>3.69</td>
<td>3.11</td>
<td>8.65</td>
<td>8.65</td>
</tr>
</tbody>
</table>

| Superficie Total (m2) | 136.40 |

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>hm</td>
<td>1.65</td>
<td></td>
</tr>
<tr>
<td>hf</td>
<td>1.47</td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>0.56</td>
<td></td>
</tr>
</tbody>
</table>

Elaboración propia
Tabla 5.24
Área de laboratorio de calidad

<table>
<thead>
<tr>
<th>Elemento</th>
<th>n</th>
<th>N</th>
<th>Largo (l)</th>
<th>Ancho (a)</th>
<th>Altura (h)</th>
<th>Ss</th>
<th>Sg</th>
<th>Se</th>
<th>S Total</th>
<th>S Total x n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elementos móviles</td>
<td></td>
</tr>
<tr>
<td>Operarios</td>
<td>2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>1.65</td>
<td>0.5</td>
<td>x</td>
<td>0.349</td>
<td>0.85</td>
<td>1.70</td>
</tr>
<tr>
<td>Elementos fijos</td>
<td></td>
</tr>
<tr>
<td>Mesa de trabajo</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>0.6</td>
<td>0.9</td>
<td>1.2</td>
<td>1.2</td>
<td>1.67</td>
<td>4.07</td>
<td>16.29</td>
</tr>
<tr>
<td>Escritorio</td>
<td>2</td>
<td>1</td>
<td>1.5</td>
<td>0.7</td>
<td>0.8</td>
<td>1.05</td>
<td>1.05</td>
<td>1.46</td>
<td>3.56</td>
<td>7.13</td>
</tr>
<tr>
<td>Anaquel</td>
<td>4</td>
<td>1</td>
<td>1.2</td>
<td>0.4</td>
<td>1.85</td>
<td>0.48</td>
<td>0.48</td>
<td>0.67</td>
<td>1.63</td>
<td>6.52</td>
</tr>
</tbody>
</table>

Hm	1.65
Hf	1.18
K	0.70

Elaboración propia

Tabla 5.25
Área zona de comedor

<table>
<thead>
<tr>
<th>Personal de planta</th>
<th>Medida teórica por persona (m2)</th>
<th>Área teórica del comedor (m2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>1.58</td>
<td>37.92</td>
</tr>
</tbody>
</table>

| 20% área teórica del comedor | 7.584 |

| Área total de comedor (m2) | 45.50 |

Elaboración propia
Tabla 5.26
Área zona administrativa

<table>
<thead>
<tr>
<th>Zona administrativa</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Área</td>
<td>Personal de planta</td>
<td>Medida teórica por persona (m²)</td>
<td>Área teórica zona administrativa (m²)</td>
</tr>
<tr>
<td>Oficinas</td>
<td>7</td>
<td>9.8</td>
<td>68.6</td>
</tr>
<tr>
<td>Sala de reuniones</td>
<td>7</td>
<td>1.4</td>
<td>9.8</td>
</tr>
<tr>
<td>Sala de espera</td>
<td>4</td>
<td>1.4</td>
<td>5.6</td>
</tr>
<tr>
<td>Área total zona administrativa</td>
<td></td>
<td></td>
<td>84</td>
</tr>
</tbody>
</table>

Elaboración propia

Tabla 5.27
Área zona de vestidores de personal de planta

<table>
<thead>
<tr>
<th>Zona de vestidores de personal de planta</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Elemento</td>
<td>Cantidad</td>
<td>Dimensiones (m)</td>
<td>Área (m²)</td>
</tr>
<tr>
<td>Casilleros</td>
<td>4</td>
<td>2 x 0.5</td>
<td>4</td>
</tr>
<tr>
<td>Bancas</td>
<td>5</td>
<td>2 x 0.4</td>
<td>4</td>
</tr>
<tr>
<td>Área total</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Espacio para movilización (45%)

Espacio para movilización (45%)	3.6
Área total	11.6

Elaboración propia

Tabla 5.28
Área zona de servicios higiénicos de personal de planta

<table>
<thead>
<tr>
<th>Servicios higiénicos de personal de planta</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Elemento</td>
<td>Cantidad</td>
<td>Dimensiones (m)</td>
<td>Área teórica (m²)</td>
</tr>
<tr>
<td>Operarios</td>
<td>17</td>
<td>0.5</td>
<td>8.5</td>
</tr>
<tr>
<td>Baños</td>
<td>3</td>
<td>1.20 x 1.10</td>
<td>3.96</td>
</tr>
<tr>
<td>Lavamanos</td>
<td>4</td>
<td>0.50 x 0.40</td>
<td>0.8</td>
</tr>
<tr>
<td>Duchas</td>
<td>1</td>
<td>1.50 x 1.00</td>
<td>1.5</td>
</tr>
<tr>
<td>Área teórica</td>
<td>14.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Espacio para movilización (45%)</td>
<td>6.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Área total</td>
<td>21.40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elaboración propia
Tabla 5.29
Área zona de servicios higiénicos de personal administrativo

<table>
<thead>
<tr>
<th>Servicios higiénicos de personal administrativo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elemento</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>Personal</td>
</tr>
<tr>
<td>Baños</td>
</tr>
<tr>
<td>Lavamanos</td>
</tr>
<tr>
<td>Área teórica</td>
</tr>
<tr>
<td>Espacio para movilización (45%)</td>
</tr>
<tr>
<td>Área total</td>
</tr>
</tbody>
</table>

Elaboración propia

Tabla 5.30
Área zona de servicios higiénicos de área de recepción

<table>
<thead>
<tr>
<th>Servicios higiénicos de área de recepción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elemento</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>Clientes</td>
</tr>
<tr>
<td>Baños</td>
</tr>
<tr>
<td>Lavamanos</td>
</tr>
<tr>
<td>Área teórica</td>
</tr>
<tr>
<td>Espacio para movilización (45%)</td>
</tr>
<tr>
<td>Área total</td>
</tr>
</tbody>
</table>

Elaboración propia

Tabla 5.31
Área zona de estacionamiento y patio de maniobras

<table>
<thead>
<tr>
<th>Zona de estacionamiento y patio de maniobras</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elemento</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>Para empleados</td>
</tr>
<tr>
<td>Para clientes</td>
</tr>
<tr>
<td>Para personas con discapacidad</td>
</tr>
<tr>
<td>Para ingresso y salida de mercadería</td>
</tr>
<tr>
<td>Superficie total para estacionar en (m2)</td>
</tr>
<tr>
<td>Superficie total para espacio de maniobra (m2)</td>
</tr>
<tr>
<td>Superficie total de estacionamiento (m2)</td>
</tr>
</tbody>
</table>

Elaboración propia
Tabla 5.32
Área zona de almacén de insumos

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Unidades</th>
<th>Dimensiones (m)</th>
<th>Superficie de insumos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal</td>
<td>2</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>Anaqueles</td>
<td>10</td>
<td>2 x 0.5</td>
<td>10</td>
</tr>
<tr>
<td>Parihuelas</td>
<td>15</td>
<td>1.5 x 1</td>
<td>22.5</td>
</tr>
<tr>
<td>Área de almacén</td>
<td></td>
<td></td>
<td>33.5</td>
</tr>
<tr>
<td>30% del área de almacén</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Área total de almacén (m2)</td>
<td></td>
<td></td>
<td>44</td>
</tr>
</tbody>
</table>

Elaboración propia

Tabla 5.33
Área zona de almacén de productos terminados

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Unidades</th>
<th>Dimensiones (m)</th>
<th>Superficie de insumos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal</td>
<td>2</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>Parihuelas</td>
<td>20</td>
<td>1.5 x 1</td>
<td>30</td>
</tr>
<tr>
<td>Área de almacén</td>
<td></td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>30% del área de almacén</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Área total de almacén (m2)</td>
<td></td>
<td></td>
<td>40.3</td>
</tr>
</tbody>
</table>

Elaboración propia

Tabla 5.34
Área zona de seguridad y vigilancia

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Unidades</th>
<th>Dimensiones (m)</th>
<th>Superficie de insumos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal</td>
<td>2</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>Escritorio</td>
<td>2</td>
<td>1.5 x 1</td>
<td>3</td>
</tr>
<tr>
<td>Anaquel</td>
<td>2</td>
<td>1.85 x 1</td>
<td>3.7</td>
</tr>
<tr>
<td>Área de vigilancia</td>
<td></td>
<td></td>
<td>7.7</td>
</tr>
<tr>
<td>30% del área</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Área total de vigilancia (m2)</td>
<td></td>
<td></td>
<td>10.01</td>
</tr>
</tbody>
</table>

Elaboración propia
Tabla 5.35

Área zona de lavado de indumentaria

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Unidades</th>
<th>Dimensiones (m)</th>
<th>Superficie de insumos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Lavadora</td>
<td>1</td>
<td>0.8 x 1.8</td>
<td>1.44</td>
</tr>
<tr>
<td>Anaquel</td>
<td>3</td>
<td>1.2 x 1</td>
<td>3.6</td>
</tr>
<tr>
<td>Área de lavado indumentaria</td>
<td></td>
<td></td>
<td>5.54</td>
</tr>
<tr>
<td>Espacio para movilización (45%)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Área total de vigilancia (m2)</td>
<td></td>
<td></td>
<td>8.033</td>
</tr>
</tbody>
</table>

Elaboración propia

Tabla 5.36

Área total de la planta

<table>
<thead>
<tr>
<th>Zonas</th>
<th>Área teórica (m2)</th>
<th>Área final (m2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recepción de materia prima e insumos</td>
<td>81.40</td>
<td>83</td>
</tr>
<tr>
<td>Selección de materia prima e insumos</td>
<td>52.50</td>
<td>55</td>
</tr>
<tr>
<td>Producción</td>
<td>136.40</td>
<td>137</td>
</tr>
<tr>
<td>Almacén de productos terminados</td>
<td>40.30</td>
<td>43</td>
</tr>
<tr>
<td>Laboratorio de calidad</td>
<td>31.64</td>
<td>35</td>
</tr>
<tr>
<td>Almacén de insumos</td>
<td>43.55</td>
<td>48</td>
</tr>
<tr>
<td>Vestidores y lavandería de personal de planta</td>
<td>19.63</td>
<td>25</td>
</tr>
<tr>
<td>Servicios higiénicos de personal de planta</td>
<td>21.40</td>
<td>23</td>
</tr>
<tr>
<td>Estacionamiento y patio de maniobras</td>
<td>204.00</td>
<td>214</td>
</tr>
<tr>
<td>Área administrativa</td>
<td>84.00</td>
<td>85</td>
</tr>
<tr>
<td>Servicios higiénicos de personal administrativo</td>
<td>8.76</td>
<td>12</td>
</tr>
<tr>
<td>Servicios higiénicos de área de recepción</td>
<td>2.93</td>
<td>3</td>
</tr>
<tr>
<td>Comedor</td>
<td>45.50</td>
<td>50</td>
</tr>
<tr>
<td>Zona de seguridad y vigilancia</td>
<td>10.01</td>
<td>20</td>
</tr>
<tr>
<td>Área total</td>
<td>833</td>
<td></td>
</tr>
<tr>
<td>20% del área total</td>
<td></td>
<td>166.6</td>
</tr>
<tr>
<td>ÁREA TOTAL</td>
<td>1,000</td>
<td></td>
</tr>
</tbody>
</table>

Elaboración propia

A partir de la tabla 5.36 se puede concluir que el área total de la planta será de 1,000 metros cuadrados.
5.11.4. Dispositivos de seguridad industrial y señalización

Se implementarán dispositivos de seguridad dentro de la zona de producción, esto con el fin de prevenir accidentes relacionados al personal.

Guarda de seguridad

Si el peligro es en la parte de la maquinaria que no requiere acceso, se debe fijar una guarda de manera permanente a la maquinaria tal como puede observarse en la figura 5.13. Las guardas no deben ocasionar peligros en su entorno, por ejemplo, que tengan bordes filosos. Las guardas fijas pueden tener aberturas en el área donde la guarda encuentra la maquinaria o aberturas debido al uso de un envolvente de malla metálica.

Figura 5.13

Guarda fija de seguridad

[Imagen de guarda de seguridad]

Fuente: Google Imágenes (2017)

Esta medida de seguridad se aplicará para el proceso de pelado, ya que una vez que el operario culmine de colocar los mangos en su posición final para que la máquina realice el proceso, la guarda no permitirá que exista un riesgo de atrapamiento de miembros superiores.

Una planta procesadora de conserva de mango posee un riesgo moderado de incendio por su naturaleza del proceso así como los materiales e insumos involucrados. Es por ello que cada extintor cubrirá un área aproximada de 140 m², según la norma NTP 350.043-2 (1998). A continuación, el cálculo del número de extintores necesarios.
Número total de extintores = Área total de la planta / Área máxima de protección por extintor

Número total de extintores = 1000 m² / 140 m²

Número total de extintores = 8

En la tabla 5.37 se detalla la cantidad de extintores requeridos por zonas dentro de la planta.

Tabla 5.37

Extintores por zonas en planta

<table>
<thead>
<tr>
<th>Procesos</th>
<th>Clase de Fuego</th>
<th>Tipo de riesgo</th>
<th>Motivo</th>
<th>Número de extintores</th>
<th>Tipo de extintor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recepción de materia prima e insumos</td>
<td>A,B,C</td>
<td>Bajo</td>
<td>Montacargas, contenedores</td>
<td>1</td>
<td>Polvo químico seco triclase ABC</td>
</tr>
<tr>
<td>Selección y lavado de materia prima e insumos</td>
<td>Bajo</td>
<td>Bajo</td>
<td>Parihuelas, Etiquetas</td>
<td>1</td>
<td>Extintores de dióxido de carbono</td>
</tr>
<tr>
<td>Producción</td>
<td>C</td>
<td>Moderado</td>
<td>Máquinas</td>
<td>1</td>
<td>Extintores de agua</td>
</tr>
<tr>
<td>Almacén de productos terminados</td>
<td>A</td>
<td>Bajo</td>
<td>Parihuelas, Etiquetas</td>
<td>1</td>
<td>Extintores de agua</td>
</tr>
<tr>
<td>Almacén de insumos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laboratorio de calidad</td>
<td>C</td>
<td>Moderado</td>
<td>Máquinas</td>
<td>1</td>
<td>Extintores de dióxido de carbono</td>
</tr>
<tr>
<td>Vestidores de personal de planta</td>
<td>A</td>
<td>Bajo</td>
<td>Vestimenta</td>
<td>1</td>
<td>Extintores de agua</td>
</tr>
<tr>
<td>Servicios higiénicos de personal de planta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estacionamiento y patio de maniobras</td>
<td>A,B,C</td>
<td>Bajo</td>
<td>Automóviles</td>
<td>1</td>
<td>Polvo químico seco triclase ABC</td>
</tr>
<tr>
<td>Área administrativa</td>
<td>A,C</td>
<td>Moderado</td>
<td>Equipos eléctricos, papel</td>
<td>1</td>
<td>Polvo químico seco triclase ABC</td>
</tr>
<tr>
<td>Servicios higiénicos de personal administrativo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Servicios higiénicos de área de recepción</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comedor</td>
<td>A</td>
<td>Bajo</td>
<td>Mesas de madera</td>
<td>1</td>
<td>Extintores de agua</td>
</tr>
<tr>
<td>Zona de seguridad y vigilancia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total de extintores en la planta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

Elaboración propia

Asimismo la planta contará con las señales de seguridad necesarias, a
continuación en la figura 5.14 se muestran algunas de las señales del reglamento de seguridad y salud ocupacional, también en la tabla 5.38 se explica el significado y la aplicación de las mismas.

Figura 5.14

Señalización a tener en cuenta

![Figura 5.14: Señalización a tener en cuenta](image)

Fuente: Google Imágenes (2017)

Tabla 5.38

Forma, significado y aplicación de las señales de seguridad y salud ocupacional

<table>
<thead>
<tr>
<th>Forma</th>
<th>Significado</th>
<th>Aplicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>🚫</td>
<td>Mensaje de prohibición</td>
<td>Restringir acciones potencialmente peligrosas</td>
</tr>
<tr>
<td>🔴</td>
<td>Mensaje de obligación</td>
<td>Acciones de realización obligatoria</td>
</tr>
<tr>
<td>⚠️</td>
<td>Mensaje de advertencia</td>
<td>Señalización de situaciones de peligro</td>
</tr>
<tr>
<td>🚶‍♂️</td>
<td>Vías de evacuación</td>
<td>Indicaciones para zonas de emergencia, vías de escape, salidas, etc.</td>
</tr>
<tr>
<td>💧</td>
<td>Métodos de evacuación</td>
<td></td>
</tr>
<tr>
<td>🔥</td>
<td>Sistemas de lucha contra incendio</td>
<td>Indicación de situación de elementos contra incendio o emergencia</td>
</tr>
<tr>
<td>🕵️‍♂️</td>
<td>Señales de socorro</td>
<td></td>
</tr>
</tbody>
</table>

Elaboración propia
5.11.5. Disposición general

Después de haber calculado, por el Método de Guerchet, todos los espacios físicos que se requerirán para la planta, se procederá a analizar la disposición de éstos con ayuda de la tabla relacional, que permitirá desarrollar la propuesta de distribución, tomando en cuenta la importancia de la cercanía entre distintas áreas, no sólo productivas, sino también administrativas y de servicios por donde no existe un flujo de materiales.

Tabla relacional

Es una herramienta para preparar un planteamiento de mejora que permite integrar los servicios anexos a los servicios productivos y operacionales, así como prever la disposición de los servicios y de las oficinas. La escala de valores para la proximidad de las actividades queda indicada por las letras A, E, I, O, U, X, donde cada una de ellas tiene el siguiente valor, según la tabla 5.39.

Tabla 5.39
Códigos relacionales

<table>
<thead>
<tr>
<th>Código</th>
<th>Valor de la proximidad</th>
<th>Color</th>
<th>N° de líneas</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Absolutamente necesario</td>
<td>Rojo</td>
<td>4</td>
</tr>
<tr>
<td>E</td>
<td>Especialmente necesario</td>
<td>Amarillo</td>
<td>3</td>
</tr>
<tr>
<td>I</td>
<td>Importante</td>
<td>Verde</td>
<td>2</td>
</tr>
<tr>
<td>O</td>
<td>Normal y ordinario</td>
<td>Azul</td>
<td>1</td>
</tr>
<tr>
<td>U</td>
<td>Sin importancia</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>X</td>
<td>No recomendable</td>
<td>Plomo</td>
<td>1 ZigZag</td>
</tr>
</tbody>
</table>

Elaboración propia

Dentro del esquema de la tabla relacional encontraremos casilleros que van a indicar, como se observa en la figura 5.15.

Figura 5.15

Casillero tabla relacional

Para poder elaborar adecuadamente la tabla relacional se listarán una serie de motivos existentes en la relación de un área con otra, para el proceso de producción, como se ve en la figura 5.16:

1- No se desea el manipuleo ni la contaminación de la materia prima
2- Control del proceso
3- Flujo de materiales
4- Flujo de trabajo
5- Espacio Compartido
6- Salud y seguridad del personal
7- Seguridad

Figura 5.16

Tabla Relacional

|-----------------------------|--|-------------|----------------------------------|--------------------------|---------------------|--|--------------------------------------|-----------------|-------------------------------|-------------|-----------------------------|

Elaboración propia

En la figura 5.17 se presenta el Diagrama Relacional de Actividades, el cual permite observar todas las actividades en estudio de acuerdo con su grado o valor de
proximidad entre ellos. El objetivo es minimizar las distancias entre áreas de trabajo.

Teniendo como base la tabla relacional, debemos agrupar todas las actividades de acuerdo con su valor de proximidad. En la figura 5.18 se muestra la identificación de actividades teóricas y en la figura 5.19 se detallan las actividades para el proyecto.

Figura 5.17

Diagrama Relacional de Actividades

Figura 5.18

Identificación de actividades teóricas

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Color</th>
<th>Actividad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rojo</td>
<td>Operación (montaje o submontaje)</td>
</tr>
<tr>
<td></td>
<td>Verde</td>
<td>Operación o proceso</td>
</tr>
<tr>
<td></td>
<td>Amarillo</td>
<td>Transporte</td>
</tr>
<tr>
<td></td>
<td>Naranja</td>
<td>Almacenaje</td>
</tr>
<tr>
<td></td>
<td>Azul</td>
<td>Control</td>
</tr>
<tr>
<td></td>
<td>Azul</td>
<td>Servicios</td>
</tr>
<tr>
<td></td>
<td>Pardo</td>
<td>Administración</td>
</tr>
</tbody>
</table>

Figura 5.19

Identificación de actividades del proyecto

1. Recepción de materia prima
2. Selección, lavado y desinfección de MP
3. Producción
4. Almacén de productos terminados
5. Laboratorio de calidad
6. Almacén de insumos
7. S.S.H.H y vestidores personal de planta
8. Estacionamiento y patio de maniobras
9. Área administrativa
10. S.S.H.H administrativa y recepción
11. Comedor
12. Vigilancia y seguridad

Elaboración propia

También se ha desarrollado el diagrama relacional de espacios en la planta según la figura 5.20

Figura 5.20

Diagrama relacional de espacios

Elaboración propia
5.11.6. Disposición de detalle

De acuerdo a lo trabajado en los puntos anteriores, se puede ahora hacer una disposición más detallada de la planta ubicando las principales máquinas y sus superficies de trabajo como se muestra en la figura 5.21. El plano está en una escala de 1:200, teniendo un largo de 38 metros y ancho de 26.3 metros, dando un área total de 1000 metros cuadrados.

Figura 5.21
Plano de disposición a detalle

Elaboración propia
5.12. Cronograma de implementación del proyecto

Se elabora un diagrama de Gantt para graficar el cronograma de actividades necesarias para la ejecución del proyecto. Se toma en cuenta desde la etapa de construcción hasta tener todo listo para poner en marcha el proyecto, como se muestra en la figura 5.22.

Figura 5.22

Actividades para la ejecución del proyecto

<table>
<thead>
<tr>
<th>Id.</th>
<th>Nombre de tarea</th>
<th>Comienzo</th>
<th>Fin</th>
<th>Duración</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Implementación del proyecto</td>
<td>02/01/2017</td>
<td>16/02/2018</td>
<td>56s</td>
</tr>
<tr>
<td>2</td>
<td>Constitución de la empresa</td>
<td>06/02/2017</td>
<td>03/03/2017</td>
<td>4s</td>
</tr>
<tr>
<td>3</td>
<td>Financiamiento</td>
<td>06/03/2017</td>
<td>31/03/2017</td>
<td>4s</td>
</tr>
<tr>
<td>4</td>
<td>Adquisición del terreno</td>
<td>03/04/2017</td>
<td>28/04/2017</td>
<td>4s</td>
</tr>
<tr>
<td>5</td>
<td>Obras de construcción civil</td>
<td>01/05/2017</td>
<td>28/07/2017</td>
<td>13s</td>
</tr>
<tr>
<td>6</td>
<td>Compra de maquinaria</td>
<td>31/07/2017</td>
<td>22/09/2017</td>
<td>8s</td>
</tr>
<tr>
<td>7</td>
<td>Instalación de maquinaria</td>
<td>25/09/2017</td>
<td>17/11/2017</td>
<td>8s</td>
</tr>
<tr>
<td>8</td>
<td>Contratación de personal</td>
<td>20/11/2017</td>
<td>12/12/2017</td>
<td>4s</td>
</tr>
<tr>
<td>9</td>
<td>Contratación de personal</td>
<td>18/12/2017</td>
<td>12/01/2018</td>
<td>4s</td>
</tr>
<tr>
<td>10</td>
<td>Pruebas previas de planta</td>
<td>15/01/2018</td>
<td>09/02/2018</td>
<td>4s</td>
</tr>
<tr>
<td>11</td>
<td>Puesta en marcha</td>
<td>12/02/2018</td>
<td>16/02/2018</td>
<td>13s</td>
</tr>
</tbody>
</table>

Elaboración propia
CAPÍTULO VI. ORGANIZACIÓN Y ADMINISTRACIÓN

6.1. Formación de la organización empresarial

Dentro de la empresa deberán existir diferentes funciones en cada área como producción, logística, operaciones, ventas, marketing, para que cada miembro tenga roles y responsabilidades.

El objetivo de la organización es maximizar los resultados que se obtienen de la colaboración, trabajo y relación de todos los integrantes de una empresa. (Jovanny Segura, 2013, párr.2).

Para el proyecto, la planta contará en su organización con personal calificado haciendo un total de 23 personas.

6.2. Requerimiento de personal directivo, administrativo y de servicios

Para llevar a cabo las operaciones administrativas y operativas en la planta se detallará el perfil del personal requerido por la empresa.

Gerencia

Profesional en el campo de Ingeniería Industrial con conocimientos del sector alimenticio y exportación. Con destrezas para organizar, dirigir, ejecutar y controlar la gestión comercial, evaluando su política presupuestal y liderando el proceso de planeación estratégica.

Para este puesto, los involucrados dentro de este estudio, asumirán las responsabilidades que demanda esta posición.

Supervisor de Logística

El puesto requiere de un ingeniero industrial o administrador, con conocimiento en gestión de compras y almacenaje. Debe contar con una experiencia mínima de 4 años en el rubro industrial. Será el encargado de gestionar la compra de la materia prima y selección de proveedores de bienes y servicios.
Asimismo, deberá realizar el seguimiento a los proveedores por los suministros, por los pagos en adelanto, actualizar la orden de pedido cuando sea necesario, entre otros.

Para este puesto, uno de los involucrados dentro de este estudio, asumirá las responsabilidades que demanda esta posición.

Analista Comercial y Finanzas

Ser egresado de la carrera de Administración, que cuente con experiencia en el desarrollo de estrategias comerciales y búsqueda de nuevos mercados. Llevará acabo la presentación de reportes de venta, buscar mayor penetración de productos realizando estrategias comerciales, analizar la demanda y los competidores. Adicionalmente, se encargará de la elaboración de proyecciones económicas y financieras, costeo de productos y evaluación de la rentabilidad de la empresa.

Analista de Marketing y Recursos Humanos

Profesional que se destaque por su habilidad para generar propuestas y ejecutar actividades de marketing. Ser egresado de la carrera de Administración, que cuente con experiencia de 2 años en imagen corporativa.

Analizará los indicadores de desempeño del producto en el mercado, se encargará del diseño de materiales de imagen institucional, ejecutará campañas y actividades de la marca y manejará las redes sociales donde se encuentre la empresa. Adicional a ello, de manera eventual, se encargará de los procesos de selección para las posiciones de operarios. Recibirá los documentos de incorporación de los nuevos ingresos y coordinará la firma del contrato.

Supervisor de producción

Ser egresado de la carrera de Ingeniería Industrial, que cuente con conocimiento de 3 años en el procesamiento de alimentos y en los sistemas de gestión HACCP.

Programar, controlar y ejecutar la producción planificada, administrando en forma eficiente los recursos y manteniendo un enfoque de productividad y mejora continua. Monitorear el proceso de producción en todos los puntos de control, analizando, registrando los parámetros, como base para la gestión de indicadores. Velar por el cumplimiento de los parámetros y controles establecidos en todas las líneas operativas, con el fin de garantizar el cumplimiento de los requisitos del producto.
Supervisor de operaciones

Ser egresado de la carrera de Ingeniería Industrial o Ingeniero de Industrias Alimentarias, que cuente con experiencia mínima de 3 años en operaciones en plantas industriales del sector alimenticio.

Organizar, planificar, controlar y coordinar todas las actividades de la programación, control del status de unidades operativas, asegurar que se difundan, se cumpla y se entienda los procedimientos de seguridad.

Para este puesto, uno de los involucrados dentro de este estudio, asumirá las responsabilidades que demanda esta posición.

Supervisor de calidad

Titulado en Ingeniería de Industrias Alimentarias o Ingeniería Química. De preferencia con formación en controles y análisis químicos de procesos productivos. Experiencia no menor a 4 años.

Se encargará de coordinar, programar, supervisar y realizar muestreos y controles fisicoquímicos y organolépticos en productos en proceso y terminados, para garantizar que el proceso productivo y los productos cumplan los estándares definidos por la organización. Contribuir al aseguramiento de la calidad, desarrollo y mejora continua de los procesos y/o productos.

Operario

Persona responsable, puntual, tolerante a la presión de trabajo, proactivo y orientado al trabajo en equipo, con estudios de secundaria culminados.

Experiencia no menor a 6 meses en plantas de producción del rubro alimenticio o exportación.

Técnico de mantenimiento

La empresa a contratar contará con un técnico de mecánica, con experiencia de 1 año realizando mantenimiento a máquinas industriales.

Dentro de sus funciones será la diagnosticar fallas y realizar la reparación de los equipos industriales. Se encargará del montaje, desmontaje, mantenimiento preventivo y correctivo a la maquinaria.

Servicio de limpieza
La empresa a contratar se encargará de la limpieza de las áreas tanto administrativas como productivas.

Servicio de seguridad

La empresa a contratar se encargará de velar por la seguridad de los activos, controlar el ingreso y salida del personal, así como entes externos a la empresa.

Servicio de transporte

La empresa a contratar se encargará de llevar la materia prima de las zonas de cosecha hacia la planta. Adicional a ello se encargarán de llevar los productos terminados hacia los centros de distribución.

Personal para degustación

La empresa a contratar deberá impulsar la venta, exponiendo la mercadería en los locales de venta al público.

6.3. Estructura organizacional

Debido al tamaño, características y tipo de producción de la empresa, ésta deberá responder al organigrama de tipo horizontal o plana, ya que es utilizada en empresas medianas y pequeñas donde existen pocos niveles jerárquicos o ninguno entre el personal de la planta y la gerencia. En el caso del presente proyecto todos los supervisores, analistas y demás personal, reportarán directamente a la Gerencia General. En la figura 6.1 se detalla el organigrama de la empresa.
Figura 6.1
Organigrama de la empresa

Elaboración propia
CAPÍTULO VII: ASPECTOS ECONÓMICOS Y FINANCIEROS

El objetivo de este capítulo es analizar la información proveniente del estudio de mercado, del requerimiento de la maquinaria y equipo y del requerimiento de personal para definir el monto de inversión total que se requerirá a fin de poner en marcha el proyecto.

7.1. Inversiones

7.1.1. Estimación de las inversiones de largo plazo (tangibles e intangibles)

La inversión para llevar a cabo el proyecto de conserva de mango en almíbar, se dividirá en la adquisición de activos tangibles e intangibles.

Para efectos de redondeo, la tasa oficial de la proporción que existe entre el valor de un dólar y un nuevo sol según SUNAT, es de S/. 3.28 aproximadamente.

Activos fijos tangibles

En lo que respecta a los activos tangibles, éstos comprenden la maquinaria, equipos auxiliares, equipos de cómputo, el costo del terreno en el distrito de Puente Piedra, las edificaciones y construcciones, muebles y enseres.

Terreno

De acuerdo a la tabla 5.35, se obtiene el tamaño de planta requerido para el proyecto, el cual es de 1000 m². El costo del terreno para la implementación de la planta se muestra en la tabla 7.1, el cual se ha obtenido a través de la búsqueda de terrenos expuestos en la página web OLX, donde los usuarios venden y compran sus activos (ver Anexo 6).
Tabla 7.1

Costo del terreno

<table>
<thead>
<tr>
<th></th>
<th>Valor</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precio por m2</td>
<td>205</td>
<td>US$</td>
</tr>
<tr>
<td>Terreno</td>
<td>1,000</td>
<td>m2</td>
</tr>
<tr>
<td>Monto total</td>
<td>672,131</td>
<td>S/.</td>
</tr>
</tbody>
</table>

Fuente: OLX. (2016)
Elaboración propia

Infraestructura y obras civiles

La inversión en obras civiles se resume en la tabla 7.2. Se está considerando el precio promedio de construcción por m2.

Tabla 7.2

Costo de edificaciones y construcciones

<table>
<thead>
<tr>
<th>Zonas</th>
<th>m2</th>
<th>Precio US$/m^2$</th>
<th>Precio S/.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recepción de materia prima e insumos</td>
<td>83</td>
<td>80</td>
<td>21,779</td>
</tr>
<tr>
<td>Selección de materia prima e insumos</td>
<td>55</td>
<td>80</td>
<td>14,432</td>
</tr>
<tr>
<td>Producción</td>
<td>137</td>
<td>80</td>
<td>35,949</td>
</tr>
<tr>
<td>Almacén de productos terminados</td>
<td>43</td>
<td>80</td>
<td>11,283</td>
</tr>
<tr>
<td>Laboratorio de calidad</td>
<td>35</td>
<td>80</td>
<td>9,184</td>
</tr>
<tr>
<td>Almacén de insumos</td>
<td>48</td>
<td>80</td>
<td>12,595</td>
</tr>
<tr>
<td>Vestidores y lavandería de personal de planta</td>
<td>25</td>
<td>80</td>
<td>6,560</td>
</tr>
<tr>
<td>Servicios higiénicos de personal de planta</td>
<td>23</td>
<td>80</td>
<td>6,035</td>
</tr>
<tr>
<td>Estacionamiento y patio de maniobras</td>
<td>214</td>
<td>80</td>
<td>56,154</td>
</tr>
<tr>
<td>Área administrativa</td>
<td>85</td>
<td>80</td>
<td>22,304</td>
</tr>
<tr>
<td>Servicios higiénicos de personal administrativo</td>
<td>12</td>
<td>80</td>
<td>3,149</td>
</tr>
<tr>
<td>Servicios higiénicos de área de recepción</td>
<td>3</td>
<td>80</td>
<td>787</td>
</tr>
<tr>
<td>Comedor</td>
<td>50</td>
<td>80</td>
<td>13,120</td>
</tr>
<tr>
<td>Zona de seguridad y vigilancia</td>
<td>20</td>
<td>80</td>
<td>5,248</td>
</tr>
<tr>
<td>20% para circulación</td>
<td>166.6</td>
<td>80</td>
<td>43,716</td>
</tr>
</tbody>
</table>

Precio total 262,295

Elaboración propia

Maquinaria

De la tabla 5.3, se obtiene la relación de las maquinarias que se requerirán para la producción de conserva de mango en almíbar. En la tabla 7.3, se detalla el costo de la maquinaria.
Tabla 7.3

Costo de la maquinaria

<table>
<thead>
<tr>
<th>Equipos</th>
<th>Cantidad máquinas</th>
<th>Precio S/.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lavadora de fruta</td>
<td>1</td>
<td>23,616</td>
</tr>
<tr>
<td>Peladora de fruta</td>
<td>1</td>
<td>151,864</td>
</tr>
<tr>
<td>Marmita</td>
<td>2</td>
<td>29,900</td>
</tr>
<tr>
<td>Esterilizadora frascos</td>
<td>1</td>
<td>18,580</td>
</tr>
<tr>
<td>Llenadora almíbar</td>
<td>1</td>
<td>49,200</td>
</tr>
<tr>
<td>Taponadora</td>
<td>1</td>
<td>15,230</td>
</tr>
<tr>
<td>Etiquetadora</td>
<td>1</td>
<td>10,660</td>
</tr>
<tr>
<td>Codificadora</td>
<td>1</td>
<td>8,450</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>307,500</td>
</tr>
</tbody>
</table>

Elaboración propia

Muebles y enseres

En la tabla 7.4 se detalla los muebles y enseres para las distintas áreas de la planta.

Tabla 7.4

Muebles y enseres

<table>
<thead>
<tr>
<th>Muebles y enseres</th>
<th>Cantidad</th>
<th>Precio unitario S/.</th>
<th>Precio total S/.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contenedores para mango</td>
<td>7</td>
<td>1,200</td>
<td>8,400</td>
</tr>
<tr>
<td>Mesas de trabajo (selección, producción, laboratorio)</td>
<td>12</td>
<td>1,300</td>
<td>15,600</td>
</tr>
<tr>
<td>Lavadora industrial</td>
<td>1</td>
<td>8,000</td>
<td>8,000</td>
</tr>
<tr>
<td>Aire acondicionado</td>
<td>3</td>
<td>1,600</td>
<td>4,800</td>
</tr>
<tr>
<td>Escritorio para laboratorio</td>
<td>2</td>
<td>300</td>
<td>600</td>
</tr>
<tr>
<td>Anaqueles de acero (laboratorio)</td>
<td>4</td>
<td>500</td>
<td>2,000</td>
</tr>
<tr>
<td>Mesas comedor</td>
<td>5</td>
<td>250</td>
<td>1,250</td>
</tr>
<tr>
<td>Sillas para comedor</td>
<td>20</td>
<td>30</td>
<td>600</td>
</tr>
<tr>
<td>Microondas</td>
<td>2</td>
<td>180</td>
<td>360</td>
</tr>
<tr>
<td>Balanza electrónica</td>
<td>2</td>
<td>250</td>
<td>500</td>
</tr>
<tr>
<td>Refrigeradora</td>
<td>1</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>Mesa de reuniones</td>
<td>1</td>
<td>1,200</td>
<td>1,200</td>
</tr>
<tr>
<td>Sillas para oficinas</td>
<td>24</td>
<td>140</td>
<td>3,360</td>
</tr>
<tr>
<td>Escritorios para oficina</td>
<td>7</td>
<td>250</td>
<td>1,750</td>
</tr>
<tr>
<td>Estantes para oficina</td>
<td>8</td>
<td>100</td>
<td>800</td>
</tr>
<tr>
<td>Casilleros del personal</td>
<td>4</td>
<td>500</td>
<td>2,000</td>
</tr>
<tr>
<td>Bancas de cambio</td>
<td>5</td>
<td>120</td>
<td>600</td>
</tr>
<tr>
<td>Basurero para baños</td>
<td>16</td>
<td>12</td>
<td>192</td>
</tr>
<tr>
<td>Tacho de oficina</td>
<td>10</td>
<td>15</td>
<td>150</td>
</tr>
<tr>
<td>Anaqueles (almacén)</td>
<td>12</td>
<td>500</td>
<td>6,000</td>
</tr>
<tr>
<td>Parihuelas</td>
<td>35</td>
<td>25</td>
<td>875</td>
</tr>
<tr>
<td>Escritorio vigilancia</td>
<td>2</td>
<td>180</td>
<td>360</td>
</tr>
<tr>
<td>Extintores</td>
<td>8</td>
<td>60</td>
<td>480</td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
<td>60,877</td>
<td></td>
</tr>
</tbody>
</table>

Elaboración propia
Equipos auxiliares

El equipo auxiliar necesario en la planta será un montacargas, ya que permitirá el acarreo de materiales e insumos, según la tabla 7.5.

Tabla 7.5

<table>
<thead>
<tr>
<th>Equipo auxiliar</th>
<th>Cantidad</th>
<th>Precio S/.</th>
<th>Monto total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montacargas</td>
<td>1</td>
<td>15,075</td>
<td>15,075</td>
</tr>
</tbody>
</table>

Elaboración propia

Equipos de cómputo

Para el área administrativa se requerirán computadoras e impresoras multifuncionales, como se detalla en la tabla 7.6.

Tabla 7.6

<table>
<thead>
<tr>
<th>Equipos de cómputo</th>
<th>Cantidad</th>
<th>Costo unitario S/.</th>
<th>Costo total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computadoras</td>
<td>7</td>
<td>1,800</td>
<td>12,600</td>
</tr>
<tr>
<td>Impresora multifuncional</td>
<td>2</td>
<td>650</td>
<td>1,300</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>13,900</td>
</tr>
</tbody>
</table>

Elaboración propia

Activo fijo intangible

Los principales rubros que se consideran en esta inversión, son los estudios de factibilidad, los gastos de constitución de la empresa, gastos de puesta en marcha, capacitación al personal, entre otros. La tabla 7.7 resume la inversión total necesaria.

Tabla 7.7

<table>
<thead>
<tr>
<th>ACTIVOS INTANGIBLES</th>
<th>Precio S/.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estudios factibilidad</td>
<td>6,000</td>
</tr>
<tr>
<td>Gastos constitución de la empresa</td>
<td>550</td>
</tr>
<tr>
<td>Página web</td>
<td>2,500</td>
</tr>
<tr>
<td>Gastos de puesta en marcha e imprevistos</td>
<td>6,250</td>
</tr>
<tr>
<td>Capacitación al personal</td>
<td>7,650</td>
</tr>
<tr>
<td>Know How</td>
<td>7,800</td>
</tr>
<tr>
<td>Total</td>
<td>30,750</td>
</tr>
</tbody>
</table>

Elaboración propia
7.1.2. Estimación de las inversiones de corto plazo (Capital de trabajo)

El capital de trabajo es la capacidad de una empresa para llevar a cabo sus actividades con normalidad en un período a corto plazo durante el período que no existe ingreso por ventas.

El capital de trabajo se calcula multiplicando el total de los costos operativos del primer año por el ciclo operativo del proyecto, que para efectos de este proyecto son 3 meses.

Según el gerente de Dentitoy, quien comercializa sus productos en los supermercados, opina que se debe revisar los costos financieros dado a que las políticas de pago a proveedores son entre 60 y 90 días. (José Valcárcel, 2012, párr.10). En la tabla 7.8 se calcula el capital de trabajo.

Tabla 7.8

Estimación de las inversiones de corto plazo

<table>
<thead>
<tr>
<th>Capital de trabajo</th>
<th>2017</th>
<th>Anual</th>
<th>Por 90 días</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materia prima</td>
<td>144,024</td>
<td>395</td>
<td>35,513</td>
</tr>
<tr>
<td>Insumos y materiales</td>
<td>172,500</td>
<td>473</td>
<td>42,534</td>
</tr>
<tr>
<td>Mano de obra directa</td>
<td>273,700</td>
<td>750</td>
<td>67,488</td>
</tr>
<tr>
<td>Mano de obra indirecta</td>
<td>173,600</td>
<td>476</td>
<td>42,805</td>
</tr>
<tr>
<td>Servicios</td>
<td>326,841</td>
<td>895</td>
<td>80,591</td>
</tr>
<tr>
<td>Marketing</td>
<td>37,000</td>
<td>101</td>
<td>9,123</td>
</tr>
<tr>
<td>Total</td>
<td>1,127,665</td>
<td>3,089</td>
<td>278,054</td>
</tr>
</tbody>
</table>

Elaboración propia

Capital trabajo = Costo operativo / 365 * (ciclo operativo)

Obteniéndose S/. 278,054 como capital de trabajo.
7.2. Costos de producción

7.2.1. Costos de las materias primas

La materia prima principal para la elaboración del producto es el mango. Para la estimación del presupuesto de materia prima, se está considerando la demanda que se obtuvo en el capítulo II.

Como se explicó en capítulo II, debido a la estacionalidad que presenta el mango, la cual va de Octubre a Marzo, se ha considerado que durante los 6 meses que no existe cosecha de mango en Perú de Abril a Setiembre, se importará del país de México, obteniendo que el precio de importación CIF de mango de la variedad Kent es de 2.05 soles por kilogramo.

La tabla 7.9 muestra la cantidad y el costo de este fruto para el período 2017-2021. Se está considerando el precio promedio de 1.63 soles por kilogramo dado a que en el Perú el costo es de 1.2 soles por kilogramo y el de importación es de 2.05 soles por kilogramo.

<table>
<thead>
<tr>
<th></th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mangos (kg)</td>
<td>88,630</td>
<td>100,646</td>
<td>112,661</td>
<td>124,676</td>
<td>136,691</td>
</tr>
</tbody>
</table>

Adicional a ello, para la elaboración de la conserva de mango en almíbar se requieren de otros insumos y materiales, los cuales se detallan en la tabla 7.10 con sus respectivas cantidades y costos.

En la tabla se está considerando la cantidad necesaria para cubrir la demanda de conserva de mango en almíbar para los 5 primeros años del proyecto.
Tabla 7.10

Costo de materia prima, insumos y otros materiales

<table>
<thead>
<tr>
<th></th>
<th>Costo unitario</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agua (kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30,676</td>
<td>34,835</td>
<td>38,994</td>
<td>43,152</td>
<td>47,311</td>
<td></td>
</tr>
<tr>
<td>Agua (S/.)</td>
<td>S/.0.55 / kg</td>
<td>16,872</td>
<td>19,159</td>
<td>21,446</td>
<td>23,734</td>
<td>26,021</td>
</tr>
<tr>
<td>Azúcar (kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13,166</td>
<td>14,951</td>
<td>16,736</td>
<td>18,520</td>
<td>20,305</td>
<td></td>
</tr>
<tr>
<td>Azúcar (S/.)</td>
<td>S/.1.598 / kg</td>
<td>21,039</td>
<td>23,891</td>
<td>26,743</td>
<td>29,596</td>
<td>32,448</td>
</tr>
<tr>
<td>CMC (Carboximetil Celulosa) (kg)</td>
<td></td>
<td>44</td>
<td>50</td>
<td>56</td>
<td>62</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>3,081</td>
<td>3,499</td>
<td>3,917</td>
<td>4,334</td>
<td>4,752</td>
<td></td>
</tr>
<tr>
<td>Ácido ascórbico (kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>51</td>
<td>57</td>
<td>63</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Ácido ascórbico (S/.)</td>
<td>S/.14.62 / kg</td>
<td>654</td>
<td>742</td>
<td>831</td>
<td>920</td>
<td>1,008</td>
</tr>
<tr>
<td>Ácido cítrico (kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>88</td>
<td>100</td>
<td>112</td>
<td>124</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>Ácido cítrico (S/.)</td>
<td>S/.3.128 / kg</td>
<td>275</td>
<td>313</td>
<td>350</td>
<td>387</td>
<td>425</td>
</tr>
<tr>
<td>Frascos requeridos (und)</td>
<td></td>
<td>146,061</td>
<td>165,862</td>
<td>185,663</td>
<td>205,464</td>
<td>225,265</td>
</tr>
<tr>
<td>Frascos requeridos (S/.)</td>
<td>S/.0.408 / und</td>
<td>59,593</td>
<td>67,672</td>
<td>75,750</td>
<td>83,829</td>
<td>91,908</td>
</tr>
<tr>
<td>Etiquetas requeridas (und)</td>
<td></td>
<td>146,061</td>
<td>165,862</td>
<td>185,663</td>
<td>205,464</td>
<td>225,265</td>
</tr>
<tr>
<td>Etiquetas requeridas (S/.)</td>
<td>S/.0.177 / und</td>
<td>25,853</td>
<td>29,358</td>
<td>32,862</td>
<td>36,367</td>
<td>39,872</td>
</tr>
<tr>
<td>Tapas requeridas (und)</td>
<td></td>
<td>146,061</td>
<td>165,862</td>
<td>185,663</td>
<td>205,464</td>
<td>225,265</td>
</tr>
<tr>
<td>Tapas requeridas (S/.)</td>
<td>S/.0.219 / und</td>
<td>31,987</td>
<td>36,324</td>
<td>40,660</td>
<td>44,997</td>
<td>49,333</td>
</tr>
<tr>
<td>Cajas (und)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cajas (S/.)</td>
<td>S/.0.90 / und</td>
<td>13,145</td>
<td>14,928</td>
<td>16,710</td>
<td>18,492</td>
<td>20,274</td>
</tr>
<tr>
<td>Costo total anual</td>
<td></td>
<td>172,500</td>
<td>195,885</td>
<td>219,270</td>
<td>242,655</td>
<td>266,040</td>
</tr>
</tbody>
</table>

Elaboración propia

7.2.2. Costo de la mano de obra directa

Para el costo de la mano de obra directa se está considerando al personal que realiza sus labores dentro del área de producción. Para el cálculo, se toma en cuenta los beneficios como gratificaciones, ESSALUD, CTS, de acuerdo a la tabla 7.11.
Tabla 7.11

Costo de la mano de obra directa

<table>
<thead>
<tr>
<th>Procesos</th>
<th>Operarios</th>
<th>Sueldo anual (S/.)</th>
<th>ESSALUD (9%)</th>
<th>Gratificación</th>
<th>CTS</th>
<th>Pago total anual (S/.)</th>
<th>Sueldo mensual (S/.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seleccionado</td>
<td>2</td>
<td>11,751</td>
<td>1,057.6</td>
<td>2,135</td>
<td>1,157</td>
<td>32,200</td>
<td>980</td>
</tr>
<tr>
<td>Lavado</td>
<td>2</td>
<td>11,751</td>
<td>1,057.6</td>
<td>2,135</td>
<td>1,157</td>
<td>32,200</td>
<td>980</td>
</tr>
<tr>
<td>Pelado</td>
<td>1</td>
<td>11,751</td>
<td>1,057.6</td>
<td>2,135</td>
<td>1,157</td>
<td>16,100</td>
<td>980</td>
</tr>
<tr>
<td>Cortado</td>
<td>2</td>
<td>11,751</td>
<td>1,057.6</td>
<td>2,135</td>
<td>1,157</td>
<td>32,200</td>
<td>980</td>
</tr>
<tr>
<td>Escaldado</td>
<td>2</td>
<td>11,751</td>
<td>1,057.6</td>
<td>2,135</td>
<td>1,157</td>
<td>32,200</td>
<td>980</td>
</tr>
<tr>
<td>Esterilizado</td>
<td>1</td>
<td>11,751</td>
<td>1,057.6</td>
<td>2,135</td>
<td>1,157</td>
<td>16,100</td>
<td>980</td>
</tr>
<tr>
<td>Envasado</td>
<td>2</td>
<td>11,751</td>
<td>1,057.6</td>
<td>2,135</td>
<td>1,157</td>
<td>32,200</td>
<td>980</td>
</tr>
<tr>
<td>Taponado</td>
<td>1</td>
<td>11,751</td>
<td>1,057.6</td>
<td>2,135</td>
<td>1,157</td>
<td>16,100</td>
<td>980</td>
</tr>
<tr>
<td>Etiquetado</td>
<td>1</td>
<td>11,751</td>
<td>1,057.6</td>
<td>2,135</td>
<td>1,157</td>
<td>16,100</td>
<td>980</td>
</tr>
<tr>
<td>Codificado</td>
<td>1</td>
<td>11,751</td>
<td>1,057.6</td>
<td>2,135</td>
<td>1,157</td>
<td>16,100</td>
<td>980</td>
</tr>
<tr>
<td>Encajado</td>
<td>2</td>
<td>11,751</td>
<td>1,057.6</td>
<td>2,135</td>
<td>1,157</td>
<td>32,200</td>
<td>980</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>129,258</td>
<td>11,633</td>
<td>23,482</td>
<td>12,728</td>
<td>273,703</td>
<td>10,780</td>
</tr>
</tbody>
</table>

Elaboración propia

7.2.3. Costo indirecto de fabricación (materiales indirectos, mano de obra indirecta y costos generales de la planta)

Los costos indirectos de fabricación son aquellos que no intervienen directamente en la fabricación del producto. A continuación se detallará el cálculo del CIF.

En la tabla 7.12 se detallan los costos anuales de los materiales indirectos de fabricación.

Tabla 7.12

Materiales indirectos

<table>
<thead>
<tr>
<th>Materiales</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guantes en planta</td>
<td>816</td>
<td>816</td>
<td>816</td>
<td>816</td>
<td>816</td>
</tr>
<tr>
<td>Gorros</td>
<td>408</td>
<td>408</td>
<td>408</td>
<td>408</td>
<td>408</td>
</tr>
<tr>
<td>Mandiles</td>
<td>850</td>
<td>850</td>
<td>850</td>
<td>850</td>
<td>850</td>
</tr>
<tr>
<td>Botas</td>
<td>595</td>
<td>595</td>
<td>595</td>
<td>595</td>
<td>595</td>
</tr>
<tr>
<td>Mascarillas</td>
<td>1,238</td>
<td>1,238</td>
<td>1,238</td>
<td>1,238</td>
<td>1,238</td>
</tr>
<tr>
<td>Tapones de oído</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td>102</td>
</tr>
<tr>
<td>Cinta de embalaje</td>
<td>2,702</td>
<td>3,068</td>
<td>3,435</td>
<td>3,801</td>
<td>4,167</td>
</tr>
<tr>
<td>Escoba</td>
<td>450</td>
<td>450</td>
<td>450</td>
<td>450</td>
<td>450</td>
</tr>
<tr>
<td>Trapeador y baldes</td>
<td>615</td>
<td>615</td>
<td>615</td>
<td>615</td>
<td>615</td>
</tr>
<tr>
<td>Lejía y jabón</td>
<td>828</td>
<td>828</td>
<td>828</td>
<td>828</td>
<td>828</td>
</tr>
<tr>
<td>Papel higiénico</td>
<td>1815</td>
<td>1815</td>
<td>1815</td>
<td>1815</td>
<td>1815</td>
</tr>
<tr>
<td>Guantes de limpieza</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>Total</td>
<td>10,515</td>
<td>10,881</td>
<td>11,247</td>
<td>11,614</td>
<td>11,980</td>
</tr>
</tbody>
</table>

Elaboración propia
En la siguiente tabla 7.13, se explica la cantidad de trabajadores administrativos necesarios para el desarrollo del proyecto que están relacionados de manera indirecta con el proceso de producción. También se detalla el sueldo que perciben anualmente. Para el cálculo, se ha tomado en cuenta una remuneración de 14 meses al año.

Tabla 7.13

Mano de obra indirecta

<table>
<thead>
<tr>
<th>Puestos</th>
<th>Personal</th>
<th>Sueldo anual (S/.)</th>
<th>ESSALUD (9%)</th>
<th>Gratificación</th>
<th>CTS</th>
<th>Pago total anual (S/.)</th>
<th>Sueldo mensual (S/.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superv. Producción</td>
<td>1</td>
<td>40,872</td>
<td>3,678.5</td>
<td>7,425</td>
<td>4,025</td>
<td>56,000</td>
<td>3,400</td>
</tr>
<tr>
<td>Superv. Logística</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Superv. Operaciones</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Analista Comercial</td>
<td>1</td>
<td>22,480</td>
<td>2,023.2</td>
<td>4,084</td>
<td>2,214</td>
<td>30,800</td>
<td>1,870</td>
</tr>
<tr>
<td>Analista Marketing</td>
<td>1</td>
<td>22,480</td>
<td>2,023.2</td>
<td>4,084</td>
<td>2,214</td>
<td>30,800</td>
<td>1,870</td>
</tr>
<tr>
<td>Superv. Calidad</td>
<td>1</td>
<td>40,872</td>
<td>3,678.5</td>
<td>7,425</td>
<td>4,025</td>
<td>56,000</td>
<td>3,400</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>126,703</td>
<td>11,403</td>
<td>23,018</td>
<td>12,477</td>
<td>173,600</td>
<td>10,540</td>
</tr>
</tbody>
</table>

Elaboración propia

En la tabla 7.14 se muestra los costos generales anuales de la planta de luz, agua y teléfono, los servicios que se tercerizarán como limpieza, vigilancia, transporte y mantenimiento.

Tabla 7.14

Costos generales de la planta anuales

<table>
<thead>
<tr>
<th>Costos generales anuales de la planta</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luz</td>
<td>41,674</td>
<td>42,925</td>
<td>44,212</td>
<td>45,539</td>
<td>46,905</td>
</tr>
<tr>
<td>Agua</td>
<td>3,932</td>
<td>4,175</td>
<td>4,418</td>
<td>4,660</td>
<td>4,903</td>
</tr>
<tr>
<td>Teléfono</td>
<td>3,500</td>
<td>3,500</td>
<td>3,500</td>
<td>3,500</td>
<td>3,500</td>
</tr>
<tr>
<td>Tercerización</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limpieza</td>
<td>28,000</td>
<td>28,000</td>
<td>28,000</td>
<td>28,000</td>
<td>28,000</td>
</tr>
<tr>
<td>Vigilancia</td>
<td>36,400</td>
<td>36,400</td>
<td>36,400</td>
<td>36,400</td>
<td>36,400</td>
</tr>
<tr>
<td>Técnico mantenimiento</td>
<td>16,800</td>
<td>16,800</td>
<td>16,800</td>
<td>16,800</td>
<td>16,800</td>
</tr>
<tr>
<td>Transporte (mayorista-planta)</td>
<td>45,600</td>
<td>45,600</td>
<td>45,600</td>
<td>45,600</td>
<td>45,600</td>
</tr>
<tr>
<td>Total</td>
<td>175,906</td>
<td>177,400</td>
<td>178,930</td>
<td>180,499</td>
<td>182,108</td>
</tr>
</tbody>
</table>

Elaboración propia

En la tabla 7.15, se detalla la depreciación fabril (edificaciones, máquinas y equipos y equipos auxiliares) y la depreciación no fabril (equipos de cómputo, muebles y enseres). El terreno no se considera dentro de la depreciación, ya que es un activo el cual se valoriza a través del tiempo.
Tabla 7.15

Depreciación fabril

<table>
<thead>
<tr>
<th>Activos</th>
<th>Precio S/</th>
<th>% deprec</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabril</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terreno</td>
<td>672,131</td>
<td>0%</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Edificaciones</td>
<td>262,295</td>
<td>5%</td>
<td>13,115</td>
<td>13,115</td>
<td>13,115</td>
<td>13,115</td>
<td>13,115</td>
</tr>
<tr>
<td>Máquinas y equipos</td>
<td>307,500</td>
<td>10%</td>
<td>30,750</td>
<td>30,750</td>
<td>30,750</td>
<td>30,750</td>
<td>30,750</td>
</tr>
<tr>
<td>Equipos auxiliares</td>
<td>15,075</td>
<td>10%</td>
<td>1,508</td>
<td>1,508</td>
<td>1,508</td>
<td>1,508</td>
<td>1,508</td>
</tr>
<tr>
<td>Total Dep. fabril</td>
<td></td>
<td></td>
<td>45,372</td>
<td>45,372</td>
<td>45,372</td>
<td>45,372</td>
<td>45,372</td>
</tr>
<tr>
<td>No fabril</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipo de cómputo</td>
<td>13,900</td>
<td>10%</td>
<td>1,390</td>
<td>1,390</td>
<td>1,390</td>
<td>1,390</td>
<td>1,390</td>
</tr>
<tr>
<td>Muebles y enseres</td>
<td>60,877</td>
<td>10%</td>
<td>6,088</td>
<td>6,088</td>
<td>6,088</td>
<td>6,088</td>
<td>6,088</td>
</tr>
<tr>
<td>Total Dep. No fabril</td>
<td></td>
<td></td>
<td>7,478</td>
<td>7,478</td>
<td>7,478</td>
<td>7,478</td>
<td>7,478</td>
</tr>
</tbody>
</table>

Elaboración propia

Los costos indirectos de fabricación se resumen en la tabla 7.16.

Tabla 7.16

Costos indirectos de fabricación

<table>
<thead>
<tr>
<th>CIF</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costos de materiales indirectos</td>
<td>10,515</td>
<td>10,881</td>
<td>11,247</td>
<td>11,614</td>
<td>11,980</td>
</tr>
<tr>
<td>Mano de obra indirecta</td>
<td>112,000</td>
<td>112,000</td>
<td>112,000</td>
<td>112,000</td>
<td>112,000</td>
</tr>
<tr>
<td>Servicios</td>
<td>175,907</td>
<td>177,399</td>
<td>178,930</td>
<td>180,499</td>
<td>182,108</td>
</tr>
<tr>
<td>Depreciación</td>
<td>52,850</td>
<td>52,850</td>
<td>52,850</td>
<td>52,850</td>
<td>52,850</td>
</tr>
<tr>
<td>Total</td>
<td>351,271</td>
<td>353,130</td>
<td>355,027</td>
<td>356,963</td>
<td>358,938</td>
</tr>
</tbody>
</table>

Elaboración propia
7.3. Presupuestos operativos

7.3.1. Presupuesto de ingreso por ventas

El cálculo de los ingresos se estimará según el pronóstico de producción de conserva de mango en almíbar tal como se muestra en la tabla 7.17. El valor de venta del producto a los intermediarios será de S/.10.00 por cada frasco de 750 gramos, según los resultados obtenidos en la encuesta (Anexo 1). Dicho valor será tomado para efectos de cálculo del presupuesto de ventas.

Los ingresos dentro de la vida útil del proyecto se han elaborado de acuerdo con el programa de requerimiento de insumos y materiales presentados en la tabla 7.10.

Tabla 7.17
Presupuesto de ingresos por ventas de frascos de conserva de mango en almíbar

<table>
<thead>
<tr>
<th>Año</th>
<th>Precio unitario</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frascos vendidos (und)</td>
<td></td>
<td>146,061</td>
<td>165,862</td>
<td>185,663</td>
<td>205,464</td>
<td>225,265</td>
</tr>
<tr>
<td>Frascos vendidos (S/.)</td>
<td>S/.10.00 / und</td>
<td>S/. 1,460,608</td>
<td>S/. 1,658,617</td>
<td>S/. 1,856,627</td>
<td>S/. 2,054,636</td>
<td>S/. 2,252,646</td>
</tr>
</tbody>
</table>

Elaboración propia

7.3.2. Presupuesto operativo de costos

Se conforma por la mano de obra directa. Con respecto a la mano de obra indirecta, sólo se tomarán en cuenta a quienes estén involucrados conjuntamente con los operarios para llevar a cabo los procedimientos de producción. También se consideran los costos de la materia prima e insumos requeridos para la elaboración del producto, la depreciación de activos tangibles tanto fabril como no fabril y los costos de servicios asociados a la producción.

En la Tabla 7.18, se detallan los costos directos, indirectos y generales de la planta.
Tabla 7.18

Presupuesto operativo de costos

<table>
<thead>
<tr>
<th>Año</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costos Directos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materia Prima</td>
<td>144,024</td>
<td>163,549</td>
<td>183,074</td>
<td>202,599</td>
<td>222,124</td>
</tr>
<tr>
<td>Insumos y materiales</td>
<td>172,500</td>
<td>195,885</td>
<td>219,270</td>
<td>242,655</td>
<td>266,040</td>
</tr>
<tr>
<td>MOD</td>
<td>273,700</td>
<td>273,700</td>
<td>273,700</td>
<td>273,700</td>
<td>273,700</td>
</tr>
<tr>
<td>Costos Indirectos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mantenimiento</td>
<td>16,800</td>
<td>16,800</td>
<td>16,800</td>
<td>16,800</td>
<td>16,800</td>
</tr>
<tr>
<td>Mano Obra Indirecta</td>
<td>112,000</td>
<td>112,000</td>
<td>112,000</td>
<td>112,000</td>
<td>112,000</td>
</tr>
<tr>
<td>Transporte</td>
<td>45,600</td>
<td>45,600</td>
<td>45,600</td>
<td>45,600</td>
<td>45,600</td>
</tr>
<tr>
<td>Luz</td>
<td>41,674</td>
<td>42,925</td>
<td>44,212</td>
<td>45,539</td>
<td>46,905</td>
</tr>
<tr>
<td>Agua</td>
<td>3,932</td>
<td>4,175</td>
<td>4,418</td>
<td>4,660</td>
<td>4,903</td>
</tr>
<tr>
<td>Teléfono</td>
<td>3,500</td>
<td>3,500</td>
<td>3,500</td>
<td>3,500</td>
<td>3,500</td>
</tr>
<tr>
<td>Limpieza</td>
<td>28,000</td>
<td>28,000</td>
<td>28,000</td>
<td>28,000</td>
<td>28,000</td>
</tr>
<tr>
<td>Vigilancia</td>
<td>36,400</td>
<td>36,400</td>
<td>36,400</td>
<td>36,400</td>
<td>36,400</td>
</tr>
<tr>
<td>Materiales</td>
<td>10,515</td>
<td>10,881</td>
<td>11,247</td>
<td>11,614</td>
<td>11,980</td>
</tr>
<tr>
<td>Costos generales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depreciación</td>
<td>52,850</td>
<td>52,850</td>
<td>52,850</td>
<td>52,850</td>
<td>52,850</td>
</tr>
<tr>
<td>Total</td>
<td>941,495</td>
<td>986,264</td>
<td>1,031,071</td>
<td>1,075,917</td>
<td>1,120,802</td>
</tr>
</tbody>
</table>

Elaboración propia

7.3.3. **Presupuesto operativo de gastos**

En la tabla 7.19 se muestran los gastos administrativos que son los que comprenden los salarios del personal administrativo, servicios, marketing, gastos de la empresa por concepto de amortización de intangibles, arbitrios municipales y otros gastos generales de oficina que no poseen una intervención directa en el proceso de producción.
Tabla 7.19

Presupuesto operativo de gastos

<table>
<thead>
<tr>
<th>Año</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastos de Ventas</td>
<td>115,000</td>
<td>116,480</td>
<td>118,019</td>
<td>119,620</td>
<td>121,285</td>
</tr>
<tr>
<td>Transporte (planta-centros distribución)</td>
<td>67,200</td>
<td>67,200</td>
<td>67,200</td>
<td>67,200</td>
<td>67,200</td>
</tr>
<tr>
<td>Degustaciones</td>
<td>10,800</td>
<td>10,800</td>
<td>10,800</td>
<td>10,800</td>
<td>10,800</td>
</tr>
<tr>
<td>Publicidad y marketing</td>
<td>37,000</td>
<td>38,480</td>
<td>40,019</td>
<td>41,620</td>
<td>43,285</td>
</tr>
<tr>
<td>Gastos administrativos y general</td>
<td>85,094</td>
<td>85,510</td>
<td>85,939</td>
<td>86,383</td>
<td>86,840</td>
</tr>
<tr>
<td>Gastos laborales</td>
<td>61,600</td>
<td>61,600</td>
<td>61,600</td>
<td>61,600</td>
<td>61,600</td>
</tr>
<tr>
<td>Agua</td>
<td>1,458</td>
<td>1,458</td>
<td>1,458</td>
<td>1,458</td>
<td>1,458</td>
</tr>
<tr>
<td>Luz</td>
<td>12,677</td>
<td>13,057</td>
<td>13,449</td>
<td>13,852</td>
<td>14,268</td>
</tr>
<tr>
<td>Amort. Intang (S/.)</td>
<td>3,075</td>
<td>3,075</td>
<td>3,075</td>
<td>3,075</td>
<td>3,075</td>
</tr>
<tr>
<td>Arbitrios</td>
<td>1,500</td>
<td>1,500</td>
<td>1,500</td>
<td>1,500</td>
<td>1,500</td>
</tr>
<tr>
<td>Gastos generales</td>
<td>4,784</td>
<td>4,820</td>
<td>4,858</td>
<td>4,897</td>
<td>4,939</td>
</tr>
<tr>
<td>Total</td>
<td>200,094</td>
<td>201,990</td>
<td>203,959</td>
<td>206,003</td>
<td>206,925</td>
</tr>
</tbody>
</table>

Elaboración propia

7.4. Presupuestos financieros

7.4.1. Presupuesto de Servicio de deuda

El servicio de deuda es el pago que la empresa realizará desde el momento que se haya adquirido el préstamo con el Banco de Crédito del Perú. Estos pagos se realizarán de forma mensual, durante los próximos 5 años, haciendo un total de 60 cuotas mensuales. El BCP considera una TEA (Tasa Efectiva Anual) de 12%, en cuotas fijas, para este tipo de préstamos. La inversión será financiada de la siguiente manera, según la tabla 7.20.

Tabla 7.20

Inversión total del proyecto

<table>
<thead>
<tr>
<th>Financiamiento</th>
<th>Monto S/</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banco de Crédito del Perú</td>
<td>656,233</td>
<td>40%</td>
</tr>
<tr>
<td>Aporte propio</td>
<td>984,349</td>
<td>60%</td>
</tr>
<tr>
<td>Inversión Total</td>
<td>1,640,582</td>
<td>100%</td>
</tr>
</tbody>
</table>

Elaboración propia
En el Anexo 7, se observa el detalle del pago de la deuda que será adquirida por el préstamo en el BCP. Los pagos se realizaran mensualmente, con una tasa de interés fija anual (TEA) de 12%. Se considera un plazo de 5 años para cancelar la deuda.

7.4.2. Presupuesto de Estado de Resultados

El estado de resultados mostrará los ingresos generados por las ventas de la empresa y, los costos y gastos que se requirieron para generar los ingresos. La diferencia entre estos rubros (Ingresos por ventas menos costos y gastos) determinará la utilidad o la pérdida del ejercicio. (“El estado de resultados o de pérdidas y ganancias”, 2012, párr.26).

Para el cálculo, no se considera la amortización de la deuda, ya que no representan ningún movimiento de fondos, es decir, ningún egreso real.

Se considera la retención de un 10% de participación dado a que es una empresa industrial y además cuenta con más de 20 trabajadores.

En la tabla 7.21 se detalla el estado de resultados.

Tabla 7.21
Presupuesto de Estado de Resultados

<table>
<thead>
<tr>
<th>Descripción</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingreso por venta</td>
<td>1,460,608</td>
<td>1,658,617</td>
<td>1,856,627</td>
<td>2,054,636</td>
<td>2,252,646</td>
</tr>
<tr>
<td>Costo de venta</td>
<td>-941,495</td>
<td>-986,264</td>
<td>-1,031,071</td>
<td>-1,075,917</td>
<td>-1,120,802</td>
</tr>
<tr>
<td>Dep fabril</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Utilidad Bruta</td>
<td>519,113</td>
<td>672,353</td>
<td>825,556</td>
<td>978,720</td>
<td>1,131,844</td>
</tr>
<tr>
<td>Gastos administrativos</td>
<td>-200,094</td>
<td>-201,990</td>
<td>-203,959</td>
<td>-206,003</td>
<td>-208,125</td>
</tr>
<tr>
<td>Amortización intangible</td>
<td>-3.075</td>
<td>-3.075</td>
<td>-3.075</td>
<td>-3.075</td>
<td>-3.075</td>
</tr>
<tr>
<td>Utilidad antes de participaciones e impuestos</td>
<td>308,466</td>
<td>459,810</td>
<td>611,044</td>
<td>762,165</td>
<td>913,167</td>
</tr>
<tr>
<td>Participaciones (10%)</td>
<td>-30,847</td>
<td>-45,981</td>
<td>-61,104</td>
<td>-76,216</td>
<td>-91,317</td>
</tr>
<tr>
<td>Utilidad antes de Impuestos</td>
<td>277,620</td>
<td>413,829</td>
<td>549,940</td>
<td>685,948</td>
<td>821,850</td>
</tr>
<tr>
<td>Impuesto a la renta (30%)</td>
<td>-83,286</td>
<td>-124,149</td>
<td>-164,982</td>
<td>-205,784</td>
<td>-246,555</td>
</tr>
<tr>
<td>Utilidad Neta</td>
<td>194,334</td>
<td>289,681</td>
<td>384,958</td>
<td>480,164</td>
<td>575,295</td>
</tr>
</tbody>
</table>

Elaboración propia
7.4.3. Presupuesto de Estado de Situación Financiera

El estado de situación financiera o balance general retrata la situación contable de la empresa en un determinado período. Para el caso del proyecto se está considerando un período anual. En la tabla 7.22 se detalla el estado de situación financiera del proyecto.

Tabla 7.22

<table>
<thead>
<tr>
<th>Estado de Situación Financiera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activo Total</td>
</tr>
<tr>
<td>2017</td>
</tr>
<tr>
<td>Activo Corriente</td>
</tr>
<tr>
<td>2017</td>
</tr>
<tr>
<td>Caja/Bancos</td>
</tr>
<tr>
<td>2017</td>
</tr>
<tr>
<td>Existencias (Productos terminados)</td>
</tr>
<tr>
<td>2017</td>
</tr>
<tr>
<td>Cuentas por cobrar</td>
</tr>
<tr>
<td>2017</td>
</tr>
<tr>
<td>Activo no Corriente</td>
</tr>
<tr>
<td>2017</td>
</tr>
<tr>
<td>Inversión Fija Tangible</td>
</tr>
<tr>
<td>2017</td>
</tr>
<tr>
<td>Depreciación Fabril</td>
</tr>
<tr>
<td>Inversión Fija Intangible</td>
</tr>
<tr>
<td>2017</td>
</tr>
<tr>
<td>Depreciación No Fabril</td>
</tr>
<tr>
<td>2017</td>
</tr>
<tr>
<td>Pasivo y Patrimonio</td>
</tr>
<tr>
<td>2017</td>
</tr>
<tr>
<td>Pasivo Total</td>
</tr>
<tr>
<td>2017</td>
</tr>
<tr>
<td>Pasivo Corriente</td>
</tr>
<tr>
<td>2017</td>
</tr>
<tr>
<td>Tributos por pagar (Impuesto a la Renta)</td>
</tr>
<tr>
<td>2017</td>
</tr>
<tr>
<td>Participaciones</td>
</tr>
<tr>
<td>2017</td>
</tr>
<tr>
<td>Otras cuentas por pagar</td>
</tr>
<tr>
<td>2017</td>
</tr>
<tr>
<td>Proveedores (Cuentas por Pagar Comerciales)</td>
</tr>
<tr>
<td>2017</td>
</tr>
<tr>
<td>Pasivo no Corriente</td>
</tr>
<tr>
<td>2017</td>
</tr>
<tr>
<td>Préstamo a largo plazo</td>
</tr>
<tr>
<td>2017</td>
</tr>
<tr>
<td>Patrimonio Neto</td>
</tr>
<tr>
<td>2017</td>
</tr>
<tr>
<td>Capital Social</td>
</tr>
<tr>
<td>2017</td>
</tr>
<tr>
<td>Utilidades</td>
</tr>
<tr>
<td>2017</td>
</tr>
</tbody>
</table>

Elaboración propia

7.4.4. Flujo de caja de corto plazo

El flujo de caja es un documento o informe financiero que muestra los flujos de ingresos y egresos de efectivo que ha tenido una empresa durante un periodo de 1 año. A diferencia del estado de resultados, el flujo de caja muestra lo que realmente ingresa o sale de caja como el pago de una compra; pero no la depreciación de un activo, que implica un gasto. En la tabla 7.23 se muestra el flujo de caja del año 1 del proyecto.
Tabla 7.23

Flujo de caja mensual

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dinero liquido al inicio (caja y bancos)</td>
<td>278,054</td>
<td>185,369</td>
<td>92,684</td>
<td>0</td>
<td>20,032</td>
<td>58,065</td>
<td>87,097</td>
<td>116,130</td>
<td>145,142</td>
<td>174,145</td>
<td>203,227</td>
<td>232,260</td>
</tr>
<tr>
<td>Suma de cobros (entradas de efectivo)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>121,718</td>
<td>121,718</td>
<td>121,718</td>
<td>121,718</td>
<td>121,718</td>
<td>121,718</td>
<td>121,718</td>
<td>121,718</td>
<td></td>
</tr>
<tr>
<td>Suma de pagos (salidas de efectivo)</td>
<td>92,685</td>
<td></td>
</tr>
<tr>
<td>Dinero liquido al final (caja y bancos)</td>
<td>185,369</td>
<td>92,684</td>
<td>0</td>
<td>20,032</td>
<td>58,065</td>
<td>87,097</td>
<td>116,130</td>
<td>145,142</td>
<td>174,145</td>
<td>203,227</td>
<td>232,260</td>
<td>261,292</td>
</tr>
</tbody>
</table>

Elaboración propia

7.5. Flujo de fondos netos

7.5.1. Flujo de fondos económicos

Para la elaboración del flujo de fondos del proyecto o económico, se considera la inversión total requerida por el proyecto sin importar la modalidad de financiamiento, ya sea para activo fijo o capital de trabajo. En este caso decir no se incluye los intereses y amortización que se generan con el préstamo. En la tabla 7.24 se detalla el flujo de fondo económico.

Tabla 7.24

Flujo de fondo económico

<table>
<thead>
<tr>
<th>Descripción</th>
<th>0</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversión total</td>
<td>-1,640,582</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utilidad antes de participaciones e impuestos</td>
<td>308,466</td>
<td>459,810</td>
<td>611,044</td>
<td>762,165</td>
<td>913,167</td>
<td></td>
</tr>
<tr>
<td>Participaciones (10%)</td>
<td>-30,847</td>
<td>-45,981</td>
<td>-61,104</td>
<td>-76,216</td>
<td>-91,317</td>
<td></td>
</tr>
<tr>
<td>Utilidad antes de Impuestos</td>
<td>277,620</td>
<td>413,829</td>
<td>549,940</td>
<td>685,948</td>
<td>821,850</td>
<td></td>
</tr>
<tr>
<td>Impuesto a la renta (30%)</td>
<td>-83,286</td>
<td>-124,149</td>
<td>-164,982</td>
<td>-205,784</td>
<td>-246,555</td>
<td></td>
</tr>
<tr>
<td>U. neta</td>
<td>194,334</td>
<td>289,681</td>
<td>384,958</td>
<td>480,164</td>
<td>575,295</td>
<td></td>
</tr>
<tr>
<td>Depreciación fabril</td>
<td>45,372</td>
<td>45,372</td>
<td>45,372</td>
<td>45,372</td>
<td>45,372</td>
<td></td>
</tr>
<tr>
<td>Depreciación no fabril</td>
<td>7,478</td>
<td>7,478</td>
<td>7,478</td>
<td>7,478</td>
<td>7,478</td>
<td></td>
</tr>
<tr>
<td>Amortización intangible</td>
<td>3,075</td>
<td>3,075</td>
<td>3,075</td>
<td>3,075</td>
<td>3,075</td>
<td></td>
</tr>
<tr>
<td>Valor en libros</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,067,528</td>
</tr>
<tr>
<td>Recuperación capital trabajo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>278,054</td>
</tr>
</tbody>
</table>

Elaboración propia

-1,640,582 | 250,259 | 345,605 | 440,883 | 536,088 | 1,976,802
7.5.2. Flujo de fondos financieros

Para la elaboración del flujo de fondos del inversionista o financiero, se considera sólo la inversión de recursos propios (Inversión total – préstamo). Se deduce en el estado de ganancias y pérdidas los gastos financieros (intereses) y también la amortización del préstamo, quedando el excedente para el inversionista. En la tabla 7.25 se detalla el flujo de fondo financiero.

Tabla 7.25

Flujo de fondo financiero

<table>
<thead>
<tr>
<th>Descripción</th>
<th>0</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversión total</td>
<td>-1,640,582</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deuda</td>
<td>656,233</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utilidad operativa</td>
<td>308,466</td>
<td>459,810</td>
<td>611,044</td>
<td>762,165</td>
<td>913,167</td>
<td></td>
</tr>
<tr>
<td>Gastos financieros</td>
<td>-69,442</td>
<td>57,046</td>
<td>-43,163</td>
<td>-27,614</td>
<td>-10,199</td>
<td></td>
</tr>
<tr>
<td>Utilidad antes de participaciones e impuestos</td>
<td>239,024</td>
<td>402,764</td>
<td>567,881</td>
<td>734,551</td>
<td>902,968</td>
<td></td>
</tr>
<tr>
<td>Participaciones (10%)</td>
<td>-23,902</td>
<td>-40,276</td>
<td>-56,788</td>
<td>-73,455</td>
<td>-90,297</td>
<td></td>
</tr>
<tr>
<td>Utilidad antes de Impuestos</td>
<td>215,122</td>
<td>362,488</td>
<td>511,093</td>
<td>661,095</td>
<td>812,671</td>
<td></td>
</tr>
<tr>
<td>Impuesto a la renta (30%)</td>
<td>-64,537</td>
<td>-108,746</td>
<td>-153,328</td>
<td>-198,329</td>
<td>-243,801</td>
<td></td>
</tr>
<tr>
<td>U. neta</td>
<td>150,586</td>
<td>253,742</td>
<td>357,765</td>
<td>462,767</td>
<td>568,870</td>
<td></td>
</tr>
<tr>
<td>Depreciación fabril</td>
<td>45,372</td>
<td>45,372</td>
<td>45,372</td>
<td>45,372</td>
<td>45,372</td>
<td></td>
</tr>
<tr>
<td>Depreciación no fabril</td>
<td>7,478</td>
<td>7,478</td>
<td>7,478</td>
<td>7,478</td>
<td>7,478</td>
<td></td>
</tr>
<tr>
<td>Amortización intangible</td>
<td>3,075</td>
<td>3,075</td>
<td>3,075</td>
<td>3,075</td>
<td>3,075</td>
<td></td>
</tr>
<tr>
<td>Amortización deuda</td>
<td>-103,297</td>
<td>-115,693</td>
<td>-129,576</td>
<td>-145,125</td>
<td>-162,541</td>
<td></td>
</tr>
<tr>
<td>Valor en libros</td>
<td>1,807,836</td>
<td>278,054</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recuperación capital trabajo</td>
<td>1,067,528</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

-984,349 103,213 193,973 284,114 373,566 1,807,836

Elaboración propia
CAPÍTULO VIII. EVALUACIÓN ECONÓMICA Y FINANCIERA DEL PROYECTO

La evaluación económica y financiera de proyectos tiene por objetivo identificar las ventajas y desventajas asociadas a la inversión en un proyecto antes de la implementación del mismo.

Los flujos de costos y beneficios utilizados para este tipo de evaluación producen saldos anuales netos que constituyen los flujos del proyecto, que se utilizan para el cálculo de los correspondientes indicadores: VAN económico, VAN financiero, TIR económico, TIR financiero, entre otros. (“Evaluación empresarial”, 2013, párr.52).

Todo proyecto cuya relación beneficio-costo sea mayor que la unidad, es factible económicamente, y no factible en caso de que dicha relación sea menor que uno.

El período de recupero es un instrumento que permite medir el plazo de tiempo que se requiere para que los flujos netos de efectivo de una inversión recuperen su costo o inversión inicial.

8.1. Evaluación económica: VAN, TIR, B/C, PR

En la evaluación económica, se considera el supuesto que toda la inversión es el aporte del proyecto. En ella no se considera la estructura de financiación, no se registra amortización de capital ni se considera el pago de intereses en fase pre-operativa y operativa.

El valor actual neto económico (VANE) toma en cuenta el valor de la inversión y del movimiento de fondos a través del tiempo sin considerar intereses ni amortizaciones. El proyecto es factible y se acepta, si el VANE es positivo y se rechaza en caso sea negativo.

La TIR, busca medir la rentabilidad del capital total, sin considerar el financiamiento de la inversión y la propiedad del capital. Un proyecto se acepta cuando su TIR es superior al costo del capital.
Se utilizará el costo de oportunidad de los accionistas (cok), el cual será de 18.51%. Éste valor ha sido calculado mediante el método CAPM (Capital Asset Pricing Model) que es el más utilizado para determinar la tasa de retorno correspondiente al sector evaluado cuya fórmula es:

\[
COK = KLR + (KM – KLR) \times \beta
\]

Para el cálculo, se ha utilizado una tasa libre de riesgo de 3.46% que representa el 3-month T.Bill, la rentabilidad del mercado peruano la cual es 28% y el beta activo del sector de alimentos procesados que vendría ser 0.61. (Ver Anexo 8).

La siguiente tabla 8.1 muestra la evaluación económica del proyecto:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VAN Económico</td>
<td>S/. 199,010.26</td>
</tr>
<tr>
<td>TIR</td>
<td>22%</td>
</tr>
<tr>
<td>B/C</td>
<td>1.12</td>
</tr>
<tr>
<td>PR</td>
<td>4.37 años</td>
</tr>
</tbody>
</table>

Elaboración propia

- El VAN económico es un valor positivo, lo cual indica que el proyecto de inversión será rentable.
- El proyecto se acepta dado a que la tasa interna de retorno (TIR) es de 22%, siendo ésta mayor al costo de oportunidad de 18.51%, ello indica que el proyecto producirá un rendimiento adicional.
- El coeficiente de beneficio/costo es de 1.12 y para que un proyecto sea aceptado, éste debe ser mayor a 1.
- El período de recupero del proyecto es de 4.37 años, lo que equivale a 4 años y 4 meses.

En conclusión se afirma que el proyecto es viable.
8.2. **Evaluación financiera: VAN, TIR, B/C, PR**

En la evaluación financiera, se considera el supuesto que parte de la inversión es obtenida mediante un préstamo a una entidad financiera. En ella se registra el costo financiero en etapas de pre-operación y operación. Asimismo se amortiza el capital obtenido mediante préstamo y se considera la estructura de financiamiento.

El valor actual neto financiero toma en cuenta el valor de la inversión y del movimiento de fondos a través del tiempo y considera intereses y amortizaciones. El proyecto es factible y se acepta, si el VAN financiero es positivo y se rechaza en caso sea negativo.

La TIR, busca medir la rentabilidad del capital total, donde se considera el financiamiento de la inversión y la propiedad del capital. Un proyecto se acepta cuando su TIR es superior al costo del capital.

La siguiente tabla 8.2 muestra la evaluación financiera del proyecto:

<table>
<thead>
<tr>
<th>Interpretación del flujo financiero</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAN Financiero</td>
</tr>
<tr>
<td>TIR</td>
</tr>
<tr>
<td>B/C</td>
</tr>
<tr>
<td>PR</td>
</tr>
</tbody>
</table>

Elaboración propia

- El VAN financiero es un valor positivo, lo cual indica que el proyecto de inversión será rentable.
- El proyecto se acepta dado a que la tasa interna de retorno (TIR) es de 29%, siendo ésta mayor al costo de oportunidad de 18.51%, ello indica que el proyecto producirá un rendimiento adicional.
- El coeficiente de beneficio/costo es de 1.38 y para que un proyecto sea aceptado, éste debe ser mayor a 1.
- El período de recuperación del proyecto es de 4.41 años, lo que equivale a 4 años y 5 meses.

Con lo que se concluye que el proyecto es rentable.
8.3. **Análisis de ratios (liquidez, solvencia, rentabilidad) e indicadores económicos y financieros del proyecto**

En la tabla 8.3 se muestran los valores de los ratios del proyecto, los cuales se explicarán posteriormente considerando el último año del proyecto.

Tabla 8.3

Ratios del proyecto

<table>
<thead>
<tr>
<th>Ratio</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Razón corriente</td>
<td>2.007</td>
<td>1.836</td>
<td>1.672</td>
<td>1.583</td>
<td>1.518</td>
</tr>
<tr>
<td>Prueba ácida</td>
<td>1.897</td>
<td>1.736</td>
<td>1.585</td>
<td>1.503</td>
<td>1.443</td>
</tr>
<tr>
<td>Solvencia</td>
<td>256%</td>
<td>289%</td>
<td>320%</td>
<td>332%</td>
<td>356%</td>
</tr>
<tr>
<td>Apalancamiento</td>
<td>2.158</td>
<td>2.191</td>
<td>2.261</td>
<td>2.315</td>
<td>2.370</td>
</tr>
<tr>
<td>Rentabilidad de los ingresos</td>
<td>0.211</td>
<td>0.277</td>
<td>0.329</td>
<td>0.371</td>
<td>0.405</td>
</tr>
<tr>
<td>Rendimiento sobre la inversión</td>
<td>0.165</td>
<td>0.243</td>
<td>0.313</td>
<td>0.381</td>
<td>0.446</td>
</tr>
<tr>
<td>Rentabilidad financiera</td>
<td>0.133</td>
<td>0.205</td>
<td>0.267</td>
<td>0.320</td>
<td>0.366</td>
</tr>
</tbody>
</table>

Ratios de liquidez

La liquidez es la capacidad que posee una entidad de hacer frente a sus deudas en el corto plazo, atendiendo al grado de liquidez del activo circulante. (“Ratios de Liquidez”, 2016, párr.1).

Para el presente proyecto se analizaran los ratios de razón corriente y prueba ácida.

- **Razón corriente**: Tiene como objeto verificar las posibilidades de una empresa para afrontar compromisos financieros en el corto plazo.

 Razón corriente = Activos corrientes / Pasivos corrientes

 Razón corriente = 1.52

 Esto quiere decir que la empresa por cada S/ 1.00 que debe, tiene S/ 1.52 para respaldar esa deuda.

- **Prueba ácida**: Refleja el grado de dependencia de la empresa para atender todas sus obligaciones corrientes sin necesidad de liquidar y vender sus inventarios. Si el índice es menor a 1, la empresa depende directamente de la venta de sus
inventarios para poder atender sus obligaciones corrientes.

Prueba ácida = (Activo corriente – inventarios) / Pasivo corriente
Prueba ácida = 1.44
Por cada S/. 1.00 que debe la empresa, se tiene S/. 1.44 para pagar esa deuda.

Ratios de solvencia

Ratios financieros que miden la capacidad de la empresa para hacer frente a sus obligaciones, tanto en el corto como en el largo plazo. Indica el grado de compromiso existente entre las inversiones realizadas y el patrimonio de una empresa (“Ratios del balance y de la cuenta de resultados”, 2005, párr.1).

- **Solvencia**: Mide la capacidad de una empresa para hacer frente sus obligaciones de pago. Este ratio lo podemos encontrar tanto de forma agregada, activo total entre pasivo total.

 Solvencia = (Activo no corriente + Activo corriente) / (Pasivo no corriente + Pasivo corriente) * 100%
 Solvencia = 356%

 El resultado significa que la empresa puede correr el riesgo de poseer demasiados activos corrientes, por ejemplo dinero en caja, al no tenerlo invertido puede perder valor con el paso del tiempo. Lo ideal es que este ratio sea superior a 150%.

- **Apalancamiento**: Es el endeudamiento de la empresa. Se suele considerar sólo la deuda con costos. Se mide como porcentaje sobre el total activo o total recursos propios, lo que da una idea del riesgo de la compañía por financiación. (“Ratios del balance y de la cuenta de resultados”, 2005, párr.2).

 Apalancamiento = (Activo no corriente + Activo corriente) / (Deuda con banco)
 Apalancamiento = 2.37
Dado a que el valor es 2.37, no existe un riesgo de la compañía, ya que ésta no depende de la financiación de una entidad bancaria en su mayoría.

Ratios de rentabilidad

Comparan las ganancias de un periodo con determinadas partidas del Estado de Resultado y de situación. Sus resultados materializan la eficiencia en la gestión de la empresa, es decir, la forma en que los directivos han utilizado los recursos, ofrecen respuestas más completas acerca de qué tan efectivamente está siendo manejada la empresa (“Ratios de Rentabilidad, 2008, párr.1).

- **Rentabilidad de los ingresos:** Es el margen de beneficio que se obtiene por cada nuevo sol que vende. (“Ratios de Rentabilidad, 2008, párr.2).

 \[
 \text{Rentabilidad de los ingresos} = \frac{\text{Utilidad antes de intereses e impuestos}}{\text{Ventas}}
 \]

 Rentabilidad de los ingresos = 0.41

- **Rendimiento sobre la Inversión:** El rendimiento sobre la inversión o índice de rentabilidad económica muestra la capacidad básica de la entidad para generar utilidades, o lo que es lo mismo, la utilidad que se obtiene por cada nuevo sol de activo total invertido. Proporciona el nivel de eficacia de la gestión, el nivel de rendimiento de las inversiones realizadas. Muestra en cuánto aumentó el enriquecimiento de la empresa como producto del beneficio obtenido. (“Ratios de Rentabilidad, 2008, párr.4).

 \[
 \text{Rendimiento sobre la Inversión} = \frac{\text{Utilidad antes de intereses e impuestos}}{\text{Activo Total}}
 \]

 Rendimiento sobre la Inversión = 0.45

- **El Índice de Rentabilidad Financiera:** También conocido como el rendimiento del capital contable, muestra la utilidad obtenida por cada sol de recursos propios invertidos, es decir, cuánto dinero ha generado el capital de la empresa. (“Ratios de Rentabilidad, 2008, párr.8).
Rentabilidad Financiera = Utilidad después de intereses e impuestos / Patrimonio
Rentabilidad Financiera = 0.37

El patrimonio genera S/.0.37 por cada nuevo sol invertido en los recursos propios.

8.4. Análisis de sensibilidad del proyecto

Para hacer el análisis de sensibilidad se debe realizar variaciones en parámetros como el precio del producto terminado, costo del mango en mercados mayoristas y el costo de oportunidad de los accionistas. De esta manera se muestra el cambio que producen estas variaciones en el VAN financiero y TIR financiero.

Escenario 1

Según la tabla 8.4, se deduce que el precio de venta de la conserva de mango en almíbar puede reducirse como máximo en un 10% con respecto al precio base, dado a que el VAN aún es positivo y el TIR es mayor al costo de oportunidad.

<table>
<thead>
<tr>
<th>Variación del precio de venta a intermediarios por frasco</th>
<th>Flujo Económico</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIR</td>
<td>19%</td>
</tr>
<tr>
<td>B/C</td>
<td>1.02</td>
</tr>
<tr>
<td>Período recupero</td>
<td>4.91</td>
</tr>
</tbody>
</table>

Elaboración propia

En la tabla 8.5 el VAN y TIR financiero puede aceptar una reducción mayor al 10% con respecto al precio de venta, dado a que el VAN aún es positivo y el TIR es mayor al costo de oportunidad.
Tabla 8.5

Sensibilidad financiera al precio del producto

<table>
<thead>
<tr>
<th>Flujo Financiero</th>
<th>Variación del precio de venta a intermediarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAN</td>
<td>S/. 200,001</td>
</tr>
<tr>
<td>TIR</td>
<td>24%</td>
</tr>
<tr>
<td>B/C</td>
<td>1.20</td>
</tr>
<tr>
<td>Período recupero</td>
<td>5.40</td>
</tr>
</tbody>
</table>

Elaboración propia

Escenario 2

Según la tabla 8.6, se observa que si el costo de la materia prima principal que es el mango, aumentara en 30% con respecto al costo base, no tendrá mucha repercusión, puesto que el VAN es positivo y el TIR es mayor al costo de oportunidad.

Tabla 8.6

Sensibilidad económica al costo del mango

<table>
<thead>
<tr>
<th>Flujo Económico</th>
<th>Variación del costo de mango por kilogramo</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIR</td>
<td>23%</td>
</tr>
<tr>
<td>B/C</td>
<td>1.14</td>
</tr>
<tr>
<td>Período recupero</td>
<td>4.27</td>
</tr>
</tbody>
</table>

Elaboración propia

En la tabla 8.7 el VAN y TIR financiero puede aceptar una reducción mayor al 10% con respecto al costo por kilogramo del mango, dado a que el VAN aún es positivo y el TIR es mayor al costo de oportunidad.

Tabla 8.7

Sensibilidad financiera al costo del mango

<table>
<thead>
<tr>
<th>Flujo Financiero</th>
<th>Variación del costo de mango</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIR</td>
<td>29%</td>
</tr>
<tr>
<td>B/C</td>
<td>1.41</td>
</tr>
<tr>
<td>Período recupero</td>
<td>4.26</td>
</tr>
</tbody>
</table>

Elaboración propia
Escenario 3

Según la tabla 8.8, el proyecto sólo puede aceptar un aumento de 20% con respecto al valor base del cok que es 18.51%, dado a que el VAN y B/C son positivos.

Tabla 8.8

Sensibilidad económica al costo de oportunidad

<table>
<thead>
<tr>
<th>Flujo Económico</th>
<th>Variación del costo de oportunidad</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>COK de 16.66%</td>
<td>COK de 17.58%</td>
</tr>
<tr>
<td>TIR</td>
<td>22%</td>
<td>22%</td>
</tr>
<tr>
<td>B/C</td>
<td>1.19</td>
<td>1.15</td>
</tr>
</tbody>
</table>

Elaboración propia

Según la tabla 8.9, el proyecto puede aceptar un aumento de 20% con respecto al valor base del cok que es 18.51%, dado a que el VAN y B/C financiero son positivos.

Tabla 8.9

Sensibilidad financiera al costo de oportunidad

<table>
<thead>
<tr>
<th>Flujo Financiero</th>
<th>Variación del costo de oportunidad</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>COK de 16.66%</td>
<td>COK de 17.58%</td>
</tr>
<tr>
<td>TIR</td>
<td>29%</td>
<td>29%</td>
</tr>
<tr>
<td>B/C</td>
<td>1.47</td>
<td>1.43</td>
</tr>
<tr>
<td>Período recupero</td>
<td>4.42</td>
<td>4.42</td>
</tr>
</tbody>
</table>

Elaboración propia
CAPÍTULO IX. EVALUACIÓN SOCIAL DEL PROYECTO

9.1. Identificación de las zonas y comunidades de influencia del proyecto

La delimitación del área de influencia del proyecto se considera sobre un mapa base de la zona de interés, como se observa en la figura 9.1

Figura 9.1
Imagen satelital de las zonas de influencia del proyecto

El Perú se caracteriza por ser un país centralista, ya que las actividades económicas, de capital y de decisiones políticas e institucionales se concentran en Lima Metropolitana, debido a que produce casi el 50% del PBI y maneja el 70% del presupuesto nacional (“Concentración económica y centralización institucional. Enemigos del desarrollo”, 2017, parr.1).

En el estudio se pueden identificar tres grupos, los cuales serán influenciados de manera directa: mercancías mayoristas de fruta, el público objetivo y la comunidad que vive en los alrededores de la zona industrial.
Comerciantes mayoristas de fruta: En lo que respecta a los comerciantes ellos serán beneficiados con la compra directa de su producto (mango fresco Kent).

Público objetivo: se define como los niveles socio-económicos A, B y C de Lima Metropolitana. Este mercado representa el 68.9% de la población perteneciente a estos estratos sociales, que cuenta con un estimado de 6,9 millones de personas según la Asociación Peruana de Empresas de Investigación de Mercados (APEIM). Estas personas cuentan con el nivel económico que les da la posibilidad de adquirir el producto.

Comunidad adyacente: Permitir que la población actúe como promotor de la conservación del medio ambiente en el que viven, para lo cual se requiere crear conciencia sobre la importancia de manejar de manera adecuada los recursos naturales (agua, suelo, aire). Por ello, la empresa buscará dar a conocer la importancia de la conservación de estos recursos en la comunidad, fomentar la formación de valores y hábitos asociados a la protección de la naturaleza y finalmente promover la coordinación entre la comunidad y la compañía, para solucionar posibles problemas ambientales vinculados a la actividad industrial, que han sido explicados en la tabla 5.6. (Matriz de aspectos e impactos ambientales).

9.2. Análisis de indicadores sociales (valor agregado, densidad de capital, intensidad de capital, generación de divisas)

Los indicadores sociales tienen por objetivo crear parámetros que muestren numéricamente el beneficio que el proyecto puede brindar al país o comunidad en donde se encuentra.

Valor agregado

Este indicador se puede entender como el valor económico que gana un bien cuando es modificado en un proceso productivo.

Se calcula sumando todos los pagos a los factores de la producción.

\[
VA: MO + DEP + GS + GAF + INT + IMP + UN
\]
A continuación se detallan los factores para el cálculo del valor agregado.

- MO: Mano de obra directa e indirecta
- DEP: Gastos de depreciación
- GS: Gasto de servicios
- GAF: Gastos de administración y finanzas
- INT: Intereses
- IMP: Impuestos
- UN: Utilidad neta

\[
\text{Valor Agregado} = 447,300 + 52,850 + 326,841 + 325,040 + 57,672 + 67,410 + 157,290
\]
\[
\text{Valor Agregado} = S/. \ 1,434,404
\]

El valor agregado calculado será para el período del primer año de actividades del proyecto.

Densidad de capital

Este indicador relaciona el activo fijo neto o grado de inversión en el proyecto, con el personal ocupado de planta. Se utiliza para estimar la inversión necesaria para generar un puesto de trabajo.

\[
\text{Densidad de capital} = \frac{\text{Inversión total}}{\text{Número de trabajadores}}
\]
\[
\text{Densidad de capital} = \frac{S/. \ 1,640,582}{23} = S/. \ 71,330 / \text{trabajador}
\]

En el caso del presente proyecto se invertirá S/. 71,330 por cada puesto de trabajo.

Intensidad de capital

En esencia, la intensidad del capital muestra la cantidad de inversión, en activos fijos, que se requiere durante un período determinado, para producir S/.1.00 de ingresos por ventas.
La fórmula de la intensidad de capital son los activos totales dividido por los ingresos de venta de un período especificado.

Intensidad de capital = Activos totales / Ingresos por ventas
Intensidad de capital = 1,362,528 / 1,460,608 = 0.93

En el proyecto se puede observar que por cada nuevo sol de aporte generado, se requerirá una inversión de S/. 0.93. Éste valor irá disminuyendo a lo largo del proyecto a medida que se genere mayor utilidad neta.

Generación de divisas

En el caso del proyecto la generación de divisas será mediante la compra de maquinaria importada antes de inicio de las actividades de la empresa y también la materia prima importada en el primero año de la vida útil del proyecto.

En la tabla 9.1 se detalla el precio en dólares estadounidenses de la generación de divisas.

Tabla 9.1

<table>
<thead>
<tr>
<th>Equipos</th>
<th>Cantidad</th>
<th>Unidad</th>
<th>Precio US$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lavadora de fruta</td>
<td>1</td>
<td>und.</td>
<td>7,200</td>
</tr>
<tr>
<td>Peladora de fruta</td>
<td>1</td>
<td>und.</td>
<td>46,300</td>
</tr>
<tr>
<td>Llenadora almíbar</td>
<td>1</td>
<td>und.</td>
<td>15,000</td>
</tr>
<tr>
<td>Taponadora</td>
<td>1</td>
<td>und.</td>
<td>4,643</td>
</tr>
<tr>
<td>Etiquetadora</td>
<td>1</td>
<td>und.</td>
<td>3,250</td>
</tr>
<tr>
<td>Codificadora</td>
<td>1</td>
<td>und.</td>
<td>2,576</td>
</tr>
<tr>
<td>Materia prima (mango Kent)</td>
<td>44,300 kg.</td>
<td></td>
<td>21,947</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>100,916</td>
</tr>
</tbody>
</table>

Elaboración propia
CONCLUSIONES

- Actualmente el consumo de conservas está incrementando en un 10% anual en el Perú, a través del consumo de productos derivados de frutos tropicales.

- Con referencia al estudio de mercado se concluye que los sectores socioeconómicos A, B y C, que representan el 68.9% de la población limeña, estarían dispuestos a pagar más por un producto saludable, con valor agregado y de calidad.

- En cuanto a la disponibilidad de materia prima, se concluye que ésta no es un factor limitante para la producción de conserva de mango en almíbar, ya que Perú cuenta con una producción de 69,891.93 toneladas de la variedad Kent en el país.

- El uso de datos cuantitativos en la localización de la planta es esencial. Por ende, a través del método de Ranking de Factores, donde se obtuvo un valor de 7.25, se concluyó que la mejor localización para la planta sea en el distrito de Puente Piedra.

- En el último año del proyecto, la planta producirá 225,265 frascos de conserva de mango, superando el punto de equilibrio, por lo que se concluye que el proyecto es económicamente viable.

- Respecto a la tecnología, se ha determinado que la empresa realizará la importación de maquinarias por un monto de US$ 79,000 para el proceso de producción, debido a que en el mercado nacional aún existe un déficit de innovación tecnológica para este rubro.

- Para la comercialización de cualquier producto en el mercado nacional, se debe cumplir con ciertas normas exigidas por el Estado (NTP 209.038:2009 Alimentos Envasados. Etiquetado); por ende, la empresa estará sujeta a cumplir las mismas.

- El proyecto es viable, ya que se obtuvo un VAN financiero de S/. 531,270 con una TIR de 35% y un período recupero de 3 años y 11 meses.

- Respecto al tema ambiental, la empresa implementará un sistema de gestión de residuos orgánicos y de reciclaje (vidrio, aceite, lubricante), para prevenir la contaminación de suelos, aire y agua.
RECOMENDACIONES

A continuación, detallaremos las recomendaciones:

- Dado al incremento en un 10% anual en el consumo de conservas, inversores nacionales deben optar por la inmersión en este rubro puesto que no existe muchas barreras de entrada y no se requiere una gran inversión económica.

- Se recomienda la diversificación de productos de conserva derivados de frutas nacionales, ya que el 68.9% de la población limeña, tiene un gasto promedio mensual en alimentos de S/. 825.

- La empresa deberá buscar un trato directo con los productores de mango, debido a la disponibilidad de esta materia prima, para que el costo de adquisición del mismo sea menor, ya que actualmente el precio mayorista por kilo es de S/. 1.20.

- El Ranking de Factores es vital para determinar la mejor localización de una planta industrial, ya que basarse en datos cualitativos conllevaría a una mala decisión y pérdidas económicas.

- Para que un proyecto sea rentable y viable, la producción debe ser superior al punto de equilibrio. Para ello se requiere encontrar la capacidad de planta utilizando parámetros como pronóstico de demanda, disponibilidad de insumos y materia prima y la capacidad de la maquinaria.

- El Estado debe promover la innovación tecnológica e industrial en el país, ya que en el presente estudio se tuvo que recurrir a proveedores extranjeros para la adquisición de maquinaria, lo cual generó un total de US$ 79,000 en divisas.

- Para mantener la disponibilidad de materia prima se recomienda manejar una cartera de por lo menos 5 comerciantes mayoristas, con la finalidad de disponer de la misma en cantidad, calidad y tiempo adecuado.

- Se recomienda canalizar la distribución de residuos orgánicos a las industrias que lo requieran como insumo en su producción o empresas dedicadas al reciclaje de los mismos.
REFERENCIAS

Luna, D. (2012). *Identificación de peligros y evaluación de riesgos*. Recuperado de http://www.academia.edu/11884474/PROCEDIMIENTO_Identificaci%C3%B3n_de_Peligros_y_Evaluaci%C3%B3n

conocimiento-empresas/

BIBLIOGRAFÍA

ANEXOS
Anexo 1: Encuesta conserva de mango en almíbar

1. OBJETIVO DEL ESTUDIO
El estudio tiene como objetivo principal definir si el producto conserva de mango en almíbar tiene una aceptación en el mercado nacional.

2. DISEÑO MUESTRAL
Universo: Se conforma por los estratos sociales A, B y C de los distritos de Lima Metropolitana.
Muestra: Se obtuvo una muestra de 385 encuestas.
Nivel de confiabilidad: Se estima una confiabilidad del 95%.
Margen de error: Se estima un margen de error del 5%.

<table>
<thead>
<tr>
<th>Cálculo del tamaño de la muestra conociendo el tamaño de la población</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamaño de la población</td>
</tr>
<tr>
<td>Nivel de confianza</td>
</tr>
<tr>
<td>Error máximo admisible</td>
</tr>
<tr>
<td>Probabilidad de éxito</td>
</tr>
<tr>
<td>Probabilidad de fracaso</td>
</tr>
</tbody>
</table>

\[n = \frac{N \times Z^2 \times p \times q}{d^2 \times (N - 1) + Z^2 \times p \times q} \]

\[n = 6,625,385.76 \]

\[n \text{ muestre} = 384.14 \]

3. COBERTURA
Geográfica: El estudio cubrió los distritos de La Molina, Surco, San Borja, San Isidro, Miraflores, San Miguel, Pueblo Libre y Lince.

4. ENCUESTA
Descripción del producto
La conserva de mango en almíbar es un producto nacional de buen sabor, agradable al paladar, con un alto contenido nutritivo y sin la presencia de residuos químicos.
Su presentación es en un envase de vidrio, el cual permite visualizar el producto final.
1. Sexo
 - F
 - M

2. Edad
 - Más de 50 años
 - De 40 a 49 años
 - De 30 a 39 años
 - De 18 a 29 años
 - Menos de 18 años

3. ¿En qué distrito vive?
 - Miraflores
 - La Molina
 - San Borja
 - Santiago de Surco
 - San Miguel
 - Jesús María
 - Pueblo Libre
 - San Isidro
 - Lince
 - Otros

4. ¿Usted suele consumir conservas de frutas?
 - Sí
 - Eventualmente
 - No

5. ¿Estaría dispuesto a comprar conserva de mango en almíbar?
 - Sí
 - Posiblemente
 - No

6. ¿Con qué frecuencia compraría conserva de mango en almíbar?
 - 1 vez al mes
 - 2 veces al mes
 - Nunca
7. Considerando que la presentación del producto en algunos supermercados es de 450 gramos, ¿cuál es el tamaño del envase que preferiría comprar?

- 750 gr de conserva de mango en almíbar
- 550 gr de conserva de mango en almíbar
- 450 gr de conserva de mango en almíbar
- Ninguno

8. Sabiendo que el producto de 450 gramos, está S/. 11.50 y basándose de la respuesta anterior ¿cuánto estaría dispuesto a pagar por el envase escogido?

- S/. 11.00
- S/. 12.00
- S/. 13.00
- Ninguno

9. ¿En qué lugares le gustaría adquirir el producto? Puede marcar más de 1 opción

- Supermercados
- Tiendas gourmet
- Grifos
- Restaurantes

10. ¿Estaría usted dispuesto a consumir conserva de mango en almíbar cuya presentación sea en un envase de vidrio?

- Sí
- Posiblemente
- No
11. ¿Cómo le gustaría recibir publicidad sobre este producto?

Redes sociales
Correo electrónico
Televisión
Radio
Eventos gastronómicos
Ninguno

Respuestas de la encuesta

1. Sexo

<table>
<thead>
<tr>
<th></th>
<th>Femenino</th>
<th>Masculino</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>153</td>
<td>247</td>
</tr>
</tbody>
</table>

2. Edad

<table>
<thead>
<tr>
<th>Edad</th>
<th>Respuestas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menos de 18 años</td>
<td>6</td>
</tr>
<tr>
<td>De 18 a 29 años</td>
<td>79</td>
</tr>
<tr>
<td>De 30 a 39 años</td>
<td>126</td>
</tr>
<tr>
<td>De 40 a 49 años</td>
<td>142</td>
</tr>
<tr>
<td>Más de 50 años</td>
<td></td>
</tr>
</tbody>
</table>
3. ¿En qué distrito vive?

4. ¿Usted suele consumir conservas de frutas?

5. ¿Estaría dispuesto a comprar conserva de mango en almíbar?
6. ¿Con qué frecuencia compraría conserva de mango en almíbar?

![Frecuencia de compra]

6. ¿Con qué frecuencia compraría conserva de mango en almíbar?

7. Considerando que la presentación del producto en algunos supermercados es de 450 gramos, ¿cuál es el tamaño del envase que preferiría comprar?

![Tamaño del envase]

7. Considerando que la presentación del producto en algunos supermercados es de 450 gramos, ¿cuál es el tamaño del envase que preferiría comprar?

8. Sabiendo que el producto de 450 gramos, está S/. 11.50 y basándose de la respuesta anterior ¿cuánto estaría dispuesto a pagar por el envase escogido?

![Disposición a pagar]

8. Sabiendo que el producto de 450 gramos, está S/. 11.50 y basándose de la respuesta anterior ¿cuánto estaría dispuesto a pagar por el envase escogido?
9. ¿En qué lugares le gustaría adquirir el producto? Puede marcar más de 1 opción

<table>
<thead>
<tr>
<th>Lugar</th>
<th>Número</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restaurantes</td>
<td>26</td>
</tr>
<tr>
<td>Grifos</td>
<td>7</td>
</tr>
<tr>
<td>Tiendas Gourmet</td>
<td>125</td>
</tr>
<tr>
<td>Supermercados</td>
<td>178</td>
</tr>
</tbody>
</table>

10. ¿Estaría usted dispuesto a consumir conserva de mango en almíbar cuya presentación sea en un envase de vidrio?

- **SI**: 20%
- **POSIBLEMENTE**: 12%
- **NO**: 68%

11. ¿Cómo le gustaría recibir publicidad sobre este producto?

<table>
<thead>
<tr>
<th>Media</th>
<th>Número</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio</td>
<td>68%</td>
</tr>
<tr>
<td>Correo electrónico</td>
<td>12%</td>
</tr>
<tr>
<td>Televisión</td>
<td>20%</td>
</tr>
<tr>
<td>Eventos gastronómicos</td>
<td>26%</td>
</tr>
<tr>
<td>Ninguno</td>
<td>68%</td>
</tr>
<tr>
<td>Redes sociales</td>
<td>20%</td>
</tr>
</tbody>
</table>

Cálculo del Alfa de Cronbach

Para determinar la validez y confiabilidad de la encuesta, se realizó el cálculo del Alfa de Cronbach con los resultados obtenidos de las 400 encuestas. El método consiste en escoger sólo las preguntas cerradas, (preguntas con opciones concisas), las cuales deben
ser convertidas a datos cuantitativos, cuyos valores van de acuerdo al orden de las alternativas. Por ejemplo, la pregunta 1 de la encuesta tiene por objetivo saber el género del encuestado; entonces sólo existen 2 alternativas, cuyo valor de la respuesta estará entre el valor numérico 1(femenino) o 2(masculino).

A continuación se muestra la fórmula para realizar el cálculo.

\[\alpha = \frac{K}{K-1} \times \left| 1 - \frac{\sum Vi}{Vt} \right| \]

Para que una encuesta tenga validez y confiabilidad, el valor del Alfa de Cronbach, debe ser superior a 0.6.

En el caso de la encuesta realizada para el presente estudio, éste valor es de 0.70. Por ende, se concluye que la encuesta es considerada como válida y fiable.
Anexo 2: Cotización de importación de mango Kent

<table>
<thead>
<tr>
<th>ATENCIÓN</th>
<th>0163845 - 23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecha Date</td>
<td>Abril 19, 2017</td>
</tr>
<tr>
<td>Puerto de Embarque Port of Charge</td>
<td>SALINA CRUZ</td>
</tr>
<tr>
<td>Puerto de Destino Port of Destination</td>
<td>CALLAO</td>
</tr>
<tr>
<td>Embarcado a Shipped to</td>
<td>HOTEL & CENTRO DE CONVENCIONES LA HACIENDA SRL</td>
</tr>
<tr>
<td>Condiciones Conditions</td>
<td>-----</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Producto Product</th>
<th>Cantidad Quantity</th>
<th>Descripción Description</th>
<th>Precio Unit Unit. Price</th>
<th>Valor Total Total Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mango Kent</td>
<td>4,430.00</td>
<td>Case containing Fresh Mango 1 x 10 kg</td>
<td>4.61</td>
<td>20,421.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CW 000563</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FOB:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>INSURANCE:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FREIGHT:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL CIF:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TWENTY ONE THOUSAND NINE HUNDRED FORTY SIX DOLLARS USA

Peso Neto
Net Weight : 44,300 KGs.

Peso Bruto
Gross Weight : 46,137 KGs.
Anexo 3: Método de ranking de factores

“La localización de la planta se determinará mediante el método de Ranking de Factores, el cual es una técnica que emplea un sistema de evaluación tomando en consideración los factores de localización de planta, tales como mercado, materias primas, mano de obra, transporte, servicios, energía, y otros. De estos factores, deben relacionarse aquéllos cuya aplicación es pertinente en el caso específico. Para desarrollar este método se deben seguir los siguientes pasos:

Paso 1

Hacer un listado de todos los factores de localización que sean importantes para el sector industrial en estudio

Paso 2

Analizar el nivel de importancia relativa de cada uno de los factores y asignarles una ponderación relativa. Para la ponderación de factores se tendrá en cuenta lo siguiente:

- Incidencia del factor sobre las operaciones de la planta.
- Importancia estratégica de una buena selección.
- Proyección de su relevancia en el tiempo.

Con estos criterios deberá evaluarse la importancia relativa de cada factor con respecto a otro; para ello se utilizará una matriz de enfrentamiento. Se establece como regla lo siguiente:

- Se le asignará un valor de uno (1) a aquel factor “más importante” que el factor con el cual es comparado.
- Se le asignará un valor de cero (0) si el factor analizado es “menos importante” que el factor con el cual es comparado.
- En casos donde la “importancia es equivalente”, ambos factores tendrán el valor “1” en el casillero correspondiente.
- En la columna del extremo derecho se contabilizarán los puntos para cada factor y se evaluará el porcentaje correspondiente, el cual representará la ponderación de dicho factor.
Paso 3
Hecho el análisis anterior, elegir las posibles localizaciones que cumplan con un nivel mínimo de desarrollo de cada uno de los factores y proponerlas como alternativas de localización.

Paso 4
Estudiar cada factor y evaluar su nivel de desarrollo en cada alternativa de localización, para ello deberá tenerse información completa de cada localización con respecto a cada factor, y asignar la calificación de cada factor en cada localidad alternativa. Para la calificación se puede utilizar la siguiente puntuación:

<table>
<thead>
<tr>
<th>Excelente</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muy Bueno</td>
<td>8</td>
</tr>
<tr>
<td>Bueno</td>
<td>6</td>
</tr>
<tr>
<td>Regular</td>
<td>4</td>
</tr>
<tr>
<td>Deficiente</td>
<td>2</td>
</tr>
</tbody>
</table>
Anexo 4: Cotizaciones de maquinaria

Señores
Hotel & Centro de Convenciones La Hacienda
Caracas – Peru
Email: niloescarboban@hotmail.com

Atención: Julio Cobian

PRESUPUESTO No: 050615-1

Por medio de la presente nos dirigimos a usted con el objeto de ofertarle el siguiente equipo:

LAVADORA GENERAL DE ALIMENTOS Ref.: 10064, 10064-1, 10064-2

BREVE DESCRIPCIÓN DEL EQUIPO

EQUIPO: LAVADORA GENERAL DE ALIMENTOS, Ref.: 10064

Nuestra lavadora multifuncional Ref. 10064 adopta un sistema avanzado UV/02 para tratamiento y desinfección del agua limpia eliminando en forma efectiva bacterias y residuos de pesticidas. Con un sistema agregado de filtrado de agua con filtro activo de carbón que permite reciclar el agua ahorrando hasta un 80% de la misma.

Fácil de operar, bajo consumo de energía, de alta eficiencia. Elimina el suelo pegado a la superficie de los vegetales, a través de un sistema de burbujas de aire.

Inicia el movimiento del lavado humano evitando los choques o fricción entre los vegetales. Puede ser usada para lavar vegetales frescos y preservados.

Características del equipo: Ref. 10064
- Medidas de la máquina (cm): 205 x 90 x 135 cm
- Peso: 250 kg
- Capacidad de producción: de 600 a 800 kg por hora
- Presión de agua: 1.6 apa
- Grado de prueba de agua: IPX1
- Alimentación: 220VAC
- Poder de la bomba de aire: 1.2 Kw
- Poder de la bomba de escalo: 1.5 Kw
- Poder de la correa: 0.18 Kw
- Consumo de aire: 110 L/h
- Consumo de agua: 530 L

Precio

<table>
<thead>
<tr>
<th>EQUIPO</th>
<th>PRECIO UNITARIO US$</th>
<th>CANT.</th>
<th>TOTAL IXIUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAVADORA GENERAL DE ALIMENTOS, Ref.: 10064</td>
<td>7,200</td>
<td>01</td>
<td>7,200</td>
</tr>
</tbody>
</table>

LE INVITAMOS A VER MÁS DE NUESTROS PRODUCTOS A LA VENTA A TRAVÉS DE NUESTRA PÁGINA WEB:

[WWW.IMARCA.COM.VE](http://www.imarca.com.ve)

Donde podrá encontrar: Vídeos, fotos, catálogos, folletos y mucho más disponible en nuestra página Web.

Sin más a que hacer referencias y esperando su pronta y favorable respuesta, queda de usted.

Atentamente,

Héctor Urrutia
Distribuidora IMARCA, c.a
info@imarca.com.ve
Tlf: 02-414-3906410
www.imarca.com.ve
LINEA PARA EL PROCESAMIENTO DE MANGO

La oferta se compone de:

1) No. 01 Máquina peladora para mango Mod. “PL6M”;
2) No. 01 Máquina descarazonadora Mod. “SS6”.

Máquinas construidas bajo normas de la CE.
Construidas según la Directiva de Máquinas 2006/42/CEE y siguientes (D.P.R. 469/96).

DESCRIPCION

1) PELADORA PARA MANGOS – Mod. PL6M
La máquina peladora semiautomática PL6M con seis cabezas de procesamiento está destinada a pelar el mango. El PL6M es una máquina de alimentación manual de péndulo exterior de todas las frutas sin necesidad de calibrado y aunque estas frutas tengan formas irregulares logrando el máximo rendimiento. La máquina está dotada con un cuadro eléctrico equipado por dos inverter: uno para la regulación de la velocidad de la fruta y el otro para regular la velocidad de la cuchilla. La máquina está construida en acero inoxidable y todos sus componentes son fácilmente intercambiables y todas las partes en contacto con el fruto se elaboran de productos alimenticios.

<table>
<thead>
<tr>
<th>CARACTERISTICAS TECNICAS mod. PL6M</th>
<th>CAPACIDAD PRODUCTIVA: aprox. 35-40 frutos/min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso: aprox. 550 kg</td>
<td>Alimentación Neumática: 7 bar</td>
</tr>
<tr>
<td>Profundidad: 1000 mm aprox.</td>
<td>Calibre frutos: H 110 - 150 mm; Ø 90-110 mm</td>
</tr>
<tr>
<td>Anchura: 2.100 mm aprox.</td>
<td>Espesor piel: 1-3 mm</td>
</tr>
<tr>
<td>Altura: 1700 mm aprox.</td>
<td>Consumo de agua: P 2.5 bar 0.6 l/min</td>
</tr>
<tr>
<td>Tensión de servicio: 380 V, trifásico</td>
<td>Consumo aire: 6 bar 190 l/min</td>
</tr>
<tr>
<td>Potencia: 1.05 Kw</td>
<td>Operador empleado: 1</td>
</tr>
</tbody>
</table>

Construido según la directiva de máquinas y siguiendo 2006/42/CEE (D.P.R. 469/96).

2) Máquina descarazonadora para mango, mod. SS6M
La máquina está construida completamente de acero inoxidable. En la construcción hemos considerado importante que todos los elementos de la máquina sean fácilmente intercambiables y en el caso de manutención o limpieza se pueda tener fácil acceso a las partes correspondientes y trabajar sin problemas.

<table>
<thead>
<tr>
<th>CARACTERISTICAS TECNICAS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacidad de producción: 60-65 frutos al minuto</td>
</tr>
<tr>
<td>Potencia establecida: 1.5 Kw</td>
</tr>
<tr>
<td>Largo: aprox. 1000 mm</td>
</tr>
<tr>
<td>Ancho: aprox. 1000 mm</td>
</tr>
<tr>
<td>Tensión: 380 V, trifásico</td>
</tr>
<tr>
<td>Peso: Aprox. 440 kg</td>
</tr>
</tbody>
</table>

PRECIOS DE VENTA

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Descripción</th>
<th>Qtad</th>
<th>Precio Unitario en US$</th>
<th>Total Venta en US$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PL6M – Máquina peladora</td>
<td>1</td>
<td>46.300,00</td>
<td>46.300,00</td>
</tr>
<tr>
<td>2</td>
<td>Cinta transportadora para fruta pelada 2200 X 200</td>
<td>1</td>
<td>Incluido</td>
<td>Incluido</td>
</tr>
<tr>
<td>3</td>
<td>Máquina descarazonadora mod. SS6M</td>
<td>1</td>
<td>23.190,00</td>
<td>23.100,00</td>
</tr>
<tr>
<td></td>
<td>Cuchillo para cortar mango</td>
<td>8</td>
<td>504,00</td>
<td>2.032,00</td>
</tr>
<tr>
<td></td>
<td>Empujador para mango</td>
<td>8</td>
<td>190,00</td>
<td>1.520,00</td>
</tr>
</tbody>
</table>

| TOTALES | US$ 72.712,00 |

Vincent Di Prisco
PND s.r.l.
Señores
HOTEL & CENTRO DE CONVENCIONES LA HACIENDA S.R.L
Cajamarca.

Atm. Sr. Julio Cobian Malaver
e-mail: juliocesarcobian@hotmail.com
Tel. 94864669

Por medio del presente le hacemos llegar cotización por lo siguiente:

Marmita con Agitador
MrV 300 – I/C

Descripción
- Construida con doble chaqueta (para aceite térmico o agua)
- Cámara interna con base semi bombeada
- Tapa abigarrada desglosable con gafitos de seguridad
- Sistema de agitación con paletas abatibles desmontables
- Válvulas estéricas de paso para control de ingreso de agua y destoque de chaqueta y para evacuación del producto
- Válvula de paso estérico con riel para descarga del producto
- Estructura que consolida sistema de agitación y marmita
- Fácil manejo y mantenimiento
- Disponibilidad de repuestos

Capacidad: 300 L/batch
**Motor de 1.5HP (1.12KW), 220/380/440v, 50/60Hz, trifásico.
**Reductor de velocidad
**Tablero de control de mando eléctrico
**Sistema de calentamiento con horillas.
**Hornillas eléctricas.
**Medidas exteriores referenciales: a:1050, l: 950, h:2100mm
**Peso aproximado del equipo: 185 kg
**Material acero inoxidable calidad AISI 304 en contacto con el producto/ y acero al carbono en estructura
**Acabo sanitario

Inversión S/.14 950.00 Nuevos Soles

SEDE CENTRAL:
Av. Brigida Silva de Ochoa 384
San Miguel - Lima
+51.1.5661001

PLANTA:
Av. Coronel Parra 107
Pitcamayo - Huancayo
+51.64.261224

Link de referencia: http://www.youtube.com/watch?v=cQybZ7m2ojs
SERIE EEL | TECNOLOGÍA

Sistema de Enjuagado de Envases Automático Lineal

- Este equipo consiste en un sistema neumático que toma los envases y los gira 180°, exponiendo las bocas de los envases a una serie de boquillas que al estar en posición los envases, éstas se abren, inyectando un chorro de agua al fondo del envase, con el fin de remover posibles contaminantes pequeños de los envases.

- El agua es drenada a una charola recolectora y los envases vuelven a colocarse en el transportador al finalizar el ciclo de enjuague.

<table>
<thead>
<tr>
<th>Envase por Minuto</th>
<th>1</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rango de Precio</td>
<td>05 $</td>
<td>12.5 $</td>
</tr>
<tr>
<td>Número de Boquillas</td>
<td>De 4 a 12 Boquillas</td>
<td></td>
</tr>
<tr>
<td>Tamaño de Envase</td>
<td>100m ± 1.5k</td>
<td></td>
</tr>
<tr>
<td>Sistema de Seguridad</td>
<td>SI</td>
<td></td>
</tr>
<tr>
<td>Manejo de Reportes</td>
<td>SI</td>
<td></td>
</tr>
<tr>
<td>Conexión Ethernet</td>
<td>SI</td>
<td></td>
</tr>
<tr>
<td>Requerimientos Eléctricos</td>
<td>220V 50/60Hz **</td>
<td></td>
</tr>
<tr>
<td>Requerimientos Aire Comp.</td>
<td>6.5kg/cm2</td>
<td></td>
</tr>
</tbody>
</table>

Costo: US$ 5,665.00

DOMICILIO EQUITEK
Tercera Avenida 914,
Colonia Zinac, CP 66350
Santa Catarina, N. L., Méx.

TELÉFONOS:
Monterrey
+52 (81) 8390-0932
Ciudad de México
+52 (55) 3622-2100
Llamada sin costo Nacional
01 (800) 024-1003

REDES SOCIALES
WhatsApp: +52 1 812150 8301
equitekmty
Máquina Llenadora de Líquidos Automática

Resumen:
La máquina llenadora de líquidos del tipo lineal, adecuada para llenar líquidos a base de agua, líquidos semifluidos, líquidos viscosos, para líquidos que generan espuma fácilmente, ideal para todo tipo de tamaños y formas de envase. Se ajusta y se opera fácilmente.

Manejo neumático, control PLC y pantalla táctil.
Diseñada razonablemente, hecha acorde a productos y muestras.
Diferentes modos disponibles para un ajuste fácil. 8 lenguajes instalados de manera interna. La superficie de esta máquina y todas las partes que entran en contacto con los materiales que son de acero inoxidable, que cumplen con los estándares de GMP.
Esta máquina llenadora de líquidos está diseñada para la más amplia variedad de productos líquidos. Nosotros utilizamos las últimas tecnologías para poder alcanzar las mejores velocidades y el llenado más preciso.
Con un fácil ajuste, esta máquina puede llenar un amplio rango de volúmenes, es adecuado para todos los tamaños y formas de envase, adecuado para botellas, Jarras, latas, etc. No hay problemas con envases de plástico, vidrio o metal, etc.

Parámetros Técnicos

<table>
<thead>
<tr>
<th>Material de llenado</th>
<th>Jugo, aceite, jabón líquido, shampoo, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boca de llenado</td>
<td>2/4/6/8 bocas (personalizado por los clientes)</td>
</tr>
<tr>
<td>Volumen de llenado</td>
<td>30-2000ml (personalizado por los clientes)</td>
</tr>
<tr>
<td>Velocidad de llenado</td>
<td>1000-3000 botellas/hora</td>
</tr>
<tr>
<td>Presión de llenado</td>
<td>±1% (Nivel de líquido)</td>
</tr>
<tr>
<td>Presión de la Fuente gas</td>
<td>2-3 MPa</td>
</tr>
<tr>
<td>Energía</td>
<td>220/380V 50/60 Hz</td>
</tr>
<tr>
<td>Energía total</td>
<td>2Kw</td>
</tr>
<tr>
<td>Ruido de máquina único</td>
<td>≤50dB</td>
</tr>
<tr>
<td>Peso</td>
<td>650Kg</td>
</tr>
<tr>
<td>Tamaño de Máquina</td>
<td>17009801650</td>
</tr>
</tbody>
</table>

Precio

UM$ 15000.00

Licen LV Manager

Nombre de empresa : Shanghai Paixie Packing Machinery Co., Ltd.
Dirección de la empresa : 8/F, No. 199, Xirunian Road, Minhang District Shanghai 201114 China
Tel : +86-21-34781699 (Working time)
Fax : 86-21-34781699-34781690
E-mail : sales1@paixiepack.com
Hotel y Centro de Convenciones La Hacienda

Estimado,
Julio Cesar Cobián Malaver

MÁQUINA TAPONADORA TW PARA TAPAS TWIST-OFF

La máquina taponadora para tapas twist-off está diseñada específicamente para automatizar el proceso completo de taponado de frascos de vidrio con tapas roscadas. La máquina usa inyección de vapor para crear vacío en los frascos durante el proceso de taponado, operación que se puede realizar en gran variedad de envases de vidrio. La máquina taponadora twist-off puede ajustarse rápidamente para admitir otro tipo de frascos o tapas.

Especificaciones
- Voltaje: 220V, 50 Hz
- Potencia: 500 W
- Tamaño de las tapas: 10-30 mm (alto), 30-100 mm (ancho)
- Capacidad: 900 frascos/hora
- Peso: 270 kg
- Controles: Botones

Ventajas:
- Para grandes volúmenes de producción
- Conversión fácil y rápida
- Completamente automática

Precio: US$ 4,640.00

EFM MACHINERY B.V.
Veendereld 2
2271 TV R Boskoop, Holanda
Teléfono: +31(0)71 - 331 22 23
Fax: +31(0)71 - 331 40 75
Correo electrónico: info@efmv.nl
PAIXIE PACKING

HOTEL & CENTRO DE CONVENCIONES LA HACIENDA
PERU

Máquina Etiquetadora

Resumen:
La máquina etiquetadora de Paixie Pack posee diferentes tipos automáticos adecuados para todo tipo de botellas (redondas, cuadradas, planas, irregulares, etc). Tenemos tres tipos diferentes de máquinas etiquetadoras: la máquina con etiquetas con adhesivo, máquina con etiquetas con pegamento húmedo y la máquina con etiquetas con acortamiento de mangas. Nuestra máquina etiquetadora es apta para para todo tipo de etiquetas de un solo lado, de dos lados, etiqueta en el cuello de la botella y demás.
1. Posee un tipo de mecanismo que asegura que el producto sea entregado correctamente y elimina efectivamente cualquier error que pueda tener la botella misma.
2. El cuerpo de la botella se configura automáticamente, posee una guía para separar cada botella y seguir la a lo largo del proceso y asegura cierta estabilidad.
3. El equipo está hecho utilizando materiales de calidad como una aleación de acero inoxidable 304 y aluminio que cumplen con lo estándares de GMP. Que además de brindarle estructura, le brindan belleza.
4. La parte eléctrica que utiliza nuestra máquina es un motor servo Panasonic, ojo eléctrico de Mitsubishi lo cual asegura la precisión y la rapidez que este proceso necesita.

Especificaciones

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Máquina Etiquetadora</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material del Envase</td>
<td>Vidrio, plástico, metal</td>
</tr>
<tr>
<td>Tamaño de la etiqueta</td>
<td>30-200 mm (Alto), 30-100 mm (Ancho)</td>
</tr>
<tr>
<td>Tamaño del Objeto</td>
<td>30-200 mm (Alto), 30-100 mm (Ancho)</td>
</tr>
<tr>
<td>Precisión de la etiqueta</td>
<td>±1 mm</td>
</tr>
<tr>
<td>Velocidad con la que se colocan etiquetas</td>
<td>30-80 botellas/min</td>
</tr>
<tr>
<td>Voltaje</td>
<td>220V, 50HZ</td>
</tr>
<tr>
<td>Energía</td>
<td>2 kw</td>
</tr>
<tr>
<td>Elección de lenguaje (Pantalla Táctil)</td>
<td>Inglés, Español, Russo, Arabigo, Francés, Italiano, Coreano, se puede personalizar.</td>
</tr>
</tbody>
</table>

Precio

US$ 3250.00

Lic. LV Manzago

Nombre de empresa: Shanghai Paixie Packing Machinery Co., Ltd.
Dirección de la empresa: Rm. 8206, 2/F, No. 189, Xinjinjia Road, Minhang District Shanghai 201114 China
Tel: +86-21-34781699 (Working time)
Tel: +86-18217966995 (Nonworking time)
Fax: +86-21-34781699-34781690
E-mail: sales1@paixiepack.com
Máquina codificadora de etiquetas

Resumen:
Esta máquina codificadora opta por la impresión térmica para evitar la contaminación, lo cual mantiene el ambiente limpio. Puede ser utilizada para imprimir información como fecha de producción en el plástico o las bolsas de papel en la comida y las industrias farmacéuticas. Las palabras impresas son duraderas ante el uso.

Características:
- La máquina de termo-impresión y codificación de etiquetas a color.
- La máquina está disponible tanto para una impresión automática o controlada por un pedal manual.
- La máquina utiliza una impresión de franjas a color, tiene las características de una impresión clara, de fácil lectura, no es pegajosa y es difícil de remover.
- Es capaz de imprimir un código en un papel fino, cartón, cuero, plástico, papel aluminio, especialmente hecha para codificar cajas de cartón de zapatos y ropa.
- Posee un control de temperatura constante y la temperatura se puede ajustar, es adecuada para diferentes colores de etiquetas.

Parámetros Principales

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Detalles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo</td>
<td>HP-041B</td>
</tr>
<tr>
<td>Voltaje</td>
<td>AC220V/50HZ 110/60HZ</td>
</tr>
<tr>
<td>Energía</td>
<td>120W</td>
</tr>
<tr>
<td>Velocidad de Impresión</td>
<td>20-70 veces/min</td>
</tr>
<tr>
<td>Tamaño de la letra impresa</td>
<td>3 líneas, 2"4*15mm</td>
</tr>
<tr>
<td>Peso</td>
<td>9.5Kgs</td>
</tr>
<tr>
<td>Dimensiones de la máquina</td>
<td>270"*260"*360mm</td>
</tr>
<tr>
<td>Temperatura</td>
<td>0-200°C</td>
</tr>
</tbody>
</table>

Precio

US$ 2576.00

Liccon LV Manager

Nombre de empresa: Shanghai Paixie Packing Machinery Co., Ltd.
Dirección de la empresa: Rm. B206, 2/F., No. 189, Xinjiang Road, Minhang District, Shanghai 201114, China
Tel: +86-21-34781699(Working time)
+86-18217396995(Nonworking time)
Fax: +86-21-34781699-34781690
E-mail: sales1@paixepack.com
Anexo 5: Sistema HACCP

El Sistema HACCP consta de siete Principios que engloban la implantación y el mantenimiento de un plan HACCP aplicado a un proceso determinado. A continuación, describimos brevemente estos 7 principios:

Principio 1. Realizar un análisis de peligros. En este punto se establece cómo comenzar a implantar el Sistema HACCP. Se prepara una lista de etapas del proceso, se elabora un Diagrama de Flújo del proceso donde se detallan todas las etapas del mismo, desde las materias primas hasta el producto final.

Principio 2. Identificar los Puntos de Control Críticos (PCC) del proceso. Una vez descritos todos los peligros y medidas de control, el equipo HACCP decide en qué puntos es crítico el control para la seguridad del producto. Son los Puntos de Control Críticos.

Principio 3. Establecer los Límites Críticos para las medidas preventivas asociadas a cada PCC. El rango confinado entre los Límites Críticos para un PCC establece la seguridad del producto en esa etapa. Los límites críticos deben basarse en parámetros cuantificables -puede existir un solo valor o establecerse un límite inferior y otro superior- y así asegurarnos su eficacia en la decisión de seguridad o peligrosidad en un PCC.

Principio 4. Establecer los criterios para la vigilancia de los PCC. El equipo de trabajo debe especificar los criterios de vigilancia para mantener los PCC dentro de los Límites Críticos. Para ello se deben establecer acciones específicas de vigilancia que incluyan la frecuencia y los responsables de llevarlas a cabo. A partir de los resultados de la vigilancia se establece el procedimiento para ajustar el proceso y mantener su control.

Principio 5. Establecer las acciones correctoras. Si la vigilancia detecta una desviación fuera de un Límite Crítico deben existir acciones correctoras que restablezcan la seguridad en ese PCC. Las medidas o acciones correctoras deben incluir todos los pasos necesarios para poner el proceso bajo control y las acciones a realizar con los productos fabricados mientras el proceso estaba fuera de control. Siempre se ha de verificar qué
personal está encargado de los procesos.

Principio 6. Implantar un sistema de registro de datos que documente el HACCP. Deben guardarse los registros para demostrar que el Sistema está funcionando bajo control y que se han realizado las acciones correctoras adecuadas cuando existe una desviación de los límites críticos. Esta documentación demostrará la fabricación de productos seguros.

Principio 7. Establecer un sistema de verificación. El sistema de verificación debe desarrollarse para mantener el HACCP y asegurar su eficacia.
Anexo 6: Cotizaciones del terreno para la planta

VENTA DE TERRENO ZONA INDUSTRIAL EN PUENTE PI
EDRA

$500.000USD

YOSELINO32. VENTA DE TERRENO ZONA INDUSTRIAL EN PUENTE PIEDRAVENTA DE TERRENO EN ZONA INDUSTRIAL
PERFECTO PARA CUALQUIER TIPO DE NEGOCIO.

ÁREA DE 2500m2.

25m2 DE FRENTE.

100m2 DE LARGO.

$200 EL m2

ZONA INDUSTRIAL.
VENTA DE TERRENO EN ZONA INDUSTRIAL DE PUENTE PIEDRA, OCASIÓN

Publicado hace 13 días
Puente Piedra, Lima, Lima

($) Negociable

$262.500USD

Vendo terreno en Parque Industrial Valle Hermoso en Puente Piedra, ideal para cualquier tipo de negocio.

Área total: 1250 m2 (Ancho: 25m x Largo: 50m)

Precio incluye casa de dos pisos construida de área: 60 m2 (Primer piso: sala-comedor, cocina, baño; Segundo piso: 4 habitaciones, baño).

Pared frontal y posterior de cerco construidas.

$210 el m2.

Título registrado en Sunarp.

Visitas, previa coordinación.
Anexo 7: Servicio de deuda

<table>
<thead>
<tr>
<th>Cuota</th>
<th>Deuda</th>
<th>Amortización</th>
<th>Interés</th>
<th>Cuota por Financiamiento</th>
<th>I.T.F. 0.005%</th>
<th>Cuota Total a Pagar</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>656,233.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>648,064.93</td>
<td>8,168.07</td>
<td>6,226.86</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>2</td>
<td>639,819.36</td>
<td>8,245.57</td>
<td>6,149.35</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>3</td>
<td>631,495.54</td>
<td>8,323.81</td>
<td>6,071.11</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>4</td>
<td>623,092.75</td>
<td>8,402.80</td>
<td>5,992.13</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>5</td>
<td>614,610.22</td>
<td>8,482.53</td>
<td>5,912.40</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>6</td>
<td>606,047.20</td>
<td>8,563.02</td>
<td>5,831.91</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>7</td>
<td>597,402.93</td>
<td>8,644.27</td>
<td>5,750.66</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>8</td>
<td>588,676.63</td>
<td>8,726.29</td>
<td>5,668.63</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>9</td>
<td>579,867.54</td>
<td>8,809.10</td>
<td>5,585.83</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>10</td>
<td>570,974.85</td>
<td>8,892.68</td>
<td>5,502.24</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>11</td>
<td>561,997.79</td>
<td>8,977.07</td>
<td>5,417.86</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>12</td>
<td>552,935.54</td>
<td>9,062.25</td>
<td>5,332.68</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>13</td>
<td>543,787.30</td>
<td>9,148.24</td>
<td>5,246.69</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>14</td>
<td>534,552.26</td>
<td>9,235.04</td>
<td>5,159.89</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>15</td>
<td>525,229.59</td>
<td>9,322.67</td>
<td>5,072.26</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>16</td>
<td>515,818.46</td>
<td>9,411.13</td>
<td>4,983.79</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>17</td>
<td>506,318.02</td>
<td>9,500.43</td>
<td>4,894.49</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>18</td>
<td>496,727.44</td>
<td>9,590.58</td>
<td>4,804.35</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>19</td>
<td>487,045.86</td>
<td>9,681.58</td>
<td>4,713.34</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>20</td>
<td>477,272.41</td>
<td>9,773.45</td>
<td>4,621.48</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>21</td>
<td>467,406.22</td>
<td>9,866.19</td>
<td>4,528.74</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>22</td>
<td>457,446.41</td>
<td>9,959.81</td>
<td>4,435.12</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>23</td>
<td>447,392.10</td>
<td>10,054.31</td>
<td>4,340.61</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>24</td>
<td>437,242.38</td>
<td>10,149.72</td>
<td>4,245.21</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>25</td>
<td>426,996.36</td>
<td>10,246.03</td>
<td>4,148.90</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>26</td>
<td>416,653.11</td>
<td>10,343.25</td>
<td>4,051.68</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>27</td>
<td>406,211.72</td>
<td>10,441.39</td>
<td>3,953.54</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>28</td>
<td>395,671.25</td>
<td>10,540.47</td>
<td>3,854.46</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>29</td>
<td>385,030.76</td>
<td>10,640.48</td>
<td>3,754.44</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>30</td>
<td>374,289.31</td>
<td>10,741.45</td>
<td>3,653.48</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>31</td>
<td>363,445.94</td>
<td>10,843.37</td>
<td>3,551.55</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>32</td>
<td>352,499.68</td>
<td>10,946.26</td>
<td>3,448.66</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>33</td>
<td>341,449.55</td>
<td>11,050.13</td>
<td>3,344.80</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>34</td>
<td>330,294.56</td>
<td>11,154.98</td>
<td>3,239.94</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>35</td>
<td>319,033.73</td>
<td>11,260.83</td>
<td>3,134.10</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>Cuota</td>
<td>Cuota Deuda</td>
<td>Cuota Amortización</td>
<td>Interés</td>
<td>Cuota por Financiamiento</td>
<td>I.T.F. 0.005%</td>
<td>Cuota Total a Pagar</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>-------------------</td>
<td>---------</td>
<td>--------------------------</td>
<td>---------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>36</td>
<td>307,666.05</td>
<td>11,367.68</td>
<td>3,027.25</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>37</td>
<td>296,190.50</td>
<td>11,475.55</td>
<td>2,919.38</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>38</td>
<td>284,606.06</td>
<td>11,584.44</td>
<td>2,810.49</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>39</td>
<td>272,911.70</td>
<td>11,694.36</td>
<td>2,700.57</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>40</td>
<td>261,106.38</td>
<td>11,805.32</td>
<td>2,589.60</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>41</td>
<td>249,189.04</td>
<td>11,917.34</td>
<td>2,477.58</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>42</td>
<td>237,158.61</td>
<td>12,030.42</td>
<td>2,364.50</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>43</td>
<td>225,014.03</td>
<td>12,144.58</td>
<td>2,250.35</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>44</td>
<td>212,754.22</td>
<td>12,259.82</td>
<td>2,135.11</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>45</td>
<td>200,378.07</td>
<td>12,376.15</td>
<td>2,018.78</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>46</td>
<td>187,884.49</td>
<td>12,493.58</td>
<td>1,901.35</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>47</td>
<td>175,272.36</td>
<td>12,612.13</td>
<td>1,782.80</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>48</td>
<td>162,540.55</td>
<td>12,731.80</td>
<td>1,663.12</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>49</td>
<td>149,687.94</td>
<td>12,852.61</td>
<td>1,542.31</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>50</td>
<td>136,713.37</td>
<td>12,974.57</td>
<td>1,420.36</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>51</td>
<td>123,615.69</td>
<td>13,097.68</td>
<td>1,297.24</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>52</td>
<td>110,393.72</td>
<td>13,221.96</td>
<td>1,172.96</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>53</td>
<td>97,046.30</td>
<td>13,347.42</td>
<td>1,047.50</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>54</td>
<td>83,572.22</td>
<td>13,474.08</td>
<td>920.85</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>55</td>
<td>69,970.30</td>
<td>13,601.93</td>
<td>793.00</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>56</td>
<td>56,239.30</td>
<td>13,730.99</td>
<td>663.93</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>57</td>
<td>42,378.02</td>
<td>13,861.28</td>
<td>533.64</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>58</td>
<td>28,385.21</td>
<td>13,992.81</td>
<td>402.12</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>59</td>
<td>14,259.62</td>
<td>14,125.59</td>
<td>269.34</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
<tr>
<td>60</td>
<td>-</td>
<td>14,259.62</td>
<td>135.31</td>
<td>14,394.93</td>
<td>0.72</td>
<td>14,395.65</td>
</tr>
</tbody>
</table>

Elaboración propia
Anexo 8: Costo de oportunidad

Cálculo del costo de oportunidad:

\[
COK = K_{LR} + (K_M - K_{LR}) \times \beta
\]

- \(COK\) = Costo de oportunidad o costo de capital
- \(K_{LR}\) = Tasa libre de riesgo
- \(K_M\) = Rentabilidad del mercado
- \(\beta\) = Beta activo

Definición de tasa libre de riesgo

Como el mismo nombre la define, es aquella tasa de rendimiento que se obtiene al invertir en un activo financiero que no tiene riesgo de incumplir su pago. Las letras del tesoro de Estados Unidos son instrumentos con bajo riesgo, esto porque se utilizan para pagar los proyectos del gobierno, es decir son esencialmente un préstamo que se da al gobierno. Dichas letras sirven de garantía por su extremadamente bajo riesgo porque en cualquier momento el Gobierno puede imprimir dinero para pagar su préstamo, además que el interés de las letras del tesoro están exentas de los impuestos locales. La existencia de la tasa libre de riesgo en el CAPM es para que los inversionistas puedan tomar como base esta tasa para endeudarse o colocar fondos. Es decir es el mínimo valor para el inversionista. (“La tasa libre de riesgo”, 2010, párr.1).

Se ha definido una tasa libre de riesgo del 3.46%

<table>
<thead>
<tr>
<th>Año</th>
<th>S&P 500</th>
<th>3-month T.Bill</th>
<th>10-year T. Bond</th>
</tr>
</thead>
<tbody>
<tr>
<td>1928-2016</td>
<td>11.42%</td>
<td>3.46%</td>
<td>5.18%</td>
</tr>
<tr>
<td>1967-2016</td>
<td>11.45%</td>
<td>4.88%</td>
<td>7.08%</td>
</tr>
<tr>
<td>2007-2016</td>
<td>8.64%</td>
<td>0.74%</td>
<td>5.03%</td>
</tr>
</tbody>
</table>

Elaboración propia
Definición de Rentabilidad del mercado

La rentabilidad del mercado peruano es de 28.00%

<table>
<thead>
<tr>
<th>Country</th>
<th>GDP (in billions)</th>
<th>Moody's rating</th>
<th>Adj. Default Spread</th>
<th>Total Risk Premium</th>
<th>Country Risk Premium</th>
<th>Corporate Tax Rate</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peru</td>
<td>189.1</td>
<td>A3</td>
<td>1.39%</td>
<td>7.40%</td>
<td>1.71%</td>
<td>28.00%</td>
<td>Central and South America</td>
</tr>
</tbody>
</table>

Elaboración propia

Definición de Beta activo

El sector analizado es el de alimentos procesados, del cual se obtuvo el valor de \(\beta = 0.61 \)

<table>
<thead>
<tr>
<th>Industry Name</th>
<th>Number of firms</th>
<th>Beta</th>
<th>D/E Ratio</th>
<th>Tax rate</th>
<th>Unlevered beta</th>
<th>Cash/Firm value</th>
<th>Unlevered beta corrected for cash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food Processing</td>
<td>87</td>
<td>0.75</td>
<td>26.84%</td>
<td>14.66%</td>
<td>0.61</td>
<td>2.57%</td>
<td>0.63</td>
</tr>
</tbody>
</table>

Elaboración propia

Reemplazando los valores en la fórmula quedaría expresada de la siguiente forma:

\[
\text{COK} = 3.46\% + (28\% - 3.46\%) \times 0.61
\]

\[
\text{COK} = 18.51\%
\]