Goal programming optimization model under uncertainty and the critical areas characterization in humanitarian logistics management

Abstract

Purpose: The purpose of this paper is to improve disaster management models, have an optimal distribution of assets, reduce human suffering in a crisis and find a good solution for warehouse locations, distribution points, inventory levels and costs, considering the uncertainty of a wide range of variables, to serve as a support model for decision making in real situations.

Design/methodology/approach: A model is developed based on the recent models. It includes structured and non-structured data (historical knowledge) from a humanitarian perspective. This model considers the uncertainty in a landslide and flood area and it is applied in a representative Peruvian city. Findings: The proposed model can be used to determine humanitarian aid supply and its distribution with uncertainty, regarding the affected population and its resilience. This model presents a different point of view from the efficiency of the logistics perspective, to identify the level of trust between all the stakeholders (public, private and academic). The finding provides a new insight in disaster management to cover the gap between applied research and human behavior in crisis. Research limitations/implications: In this study the access of reliable information is limited. Practical implications: This paper provides an operation model with uncertainty in a humanitarian crisis and a decision-making tool with some recommendation for further public policies. Originality/value: This study presents a model for decision makers in a low-income zone and highlights the importance of preparedness in the humanitarian system. This paper expands the discussion of how the mathematical models and human behaviors interact with different perspectives in a humanitarian crisis. © 2019, Emerald Publishing Limited.
References (96)

View all 96 references

 doi: 10.1016/j.lrp.2010.08.001
 View at Publisher

 JICA, Tokio

3. (2013) Estudio preparatorio sobre el programa de protección de valles y poblaciones rurales y vulnerables ante inundaciones en la República del Perú
 JICA, Tokio
Aon plc, Sydney: (accessed, September 30, 2018

5 Apte, A.
Humanitarian logistics: A new field of research and action
doi: 10.1561/0200000014

6 Azim, N.H., Subki, A., Yusof, Z.N.B.
Abiotic stresses induce total phenolic, total flavonoid and antioxidant properties in Malaysian indigenous microalgae and cyanobacterium
http://mjim.usm.my/uploads/issues/1374/4-MJM%20201003-17-
Abiotic%20stresses%20induce%20total%20phenolic,%20total%20flavonoid%20and%20antioxidant%20properties%20in%20Malaysian%20indigenous%20microalgae%20and%20cyanobacterium

7 Balcik, B., Beamon, B.M., Krejci, C.C., Muramatsu, K.M., Ramirez, M.
Coordination in humanitarian relief chains: Practices, challenges and opportunities

8 Barbarosoğlu, G., Arda, Y.
A two-stage stochastic programming framework for transportation planning in disaster response
doi: 10.1057/palgrave.jors.2601652

View at Publisher
http://www.elsevier.com/wps/find/journaldescription.cws_home/718333/description#description
doi: 10.1016/j.sorms.2016.11.001

doi: 10.1504/IJRAM.2009.026387

doi: 10.1108/01443570210414338

(2011) PERÚ: Gestión del riesgo de desastres y adaptación al cambio climático
Banco Interamericano de Desarrollo, Washington, DC

doi: 10.1108/09600031011079328

Optimization models for large scale network evacuation planning and management: A literature review

Emergency logistics and risk mitigation in Thailand following the Asian tsunami

Operations management research methodologies using quantitative modeling

Supply chain process modelling for humanitarian organizations
<table>
<thead>
<tr>
<th>No.</th>
<th>Author(s)</th>
<th>Title</th>
<th>Journal/Conference</th>
<th>Year</th>
<th>Volume</th>
<th>Pages</th>
<th>DOI</th>
<th>Cited Times</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Brito, I., Leiras, A., Yoshizaki, H.T.Y.</td>
<td>Stochastic optimization applied to the pre-positioning of disaster relief supply decisions in Brazil</td>
<td>XLVII Simpósio Brasileiro de Pesquisa Operacional</td>
<td>2015</td>
<td></td>
<td>4106-4117</td>
<td></td>
<td></td>
<td>Porto de Galinhas</td>
</tr>
</tbody>
</table>

24 Estudio de población
(7), 13

25 Cuervo, R., Díaz, F., Namen, I., Palacio, C., Sierra, C.
Humanitarian crisis: when supply chains really matter
Seoul

26 De Leeuw, S., Mok, W.Y.
An empirical analysis of humanitarian warehouse locations

27 Destro, L., Holguín-Veras, J.
Rensselaer Polytechnic Institute, Troy, New York, NY: :, (accessed, October 2, 2018

28 DuHadway, S., Carnovale, S., Hazen, B.
Understanding risk management for intentional supply chain disruptions: risk detection, risk mitigation, and risk recovery
http://www.kluweronline.com/issn/0254-5330
doi: 10.1007/s10479-017-2452-0

View at Publisher
http://www.kluweronline.com/issn/0254-5330
doi: 10.1007/s10479-015-2104-1

View at Publisher

http://www.kluweronline.com/issn/0254-5330
doi: 10.1007/s10479-017-2681-2

View at Publisher

doi: 10.1016/j.tre.2016.02.007

View at Publisher

https://doi.org/10.12660/joscmv9n1p77-93

The Sphere Project: The implications of making humanitarian principles and codes work

View at Publisher

Problem Formulation and Solution Mechanisms: A Behavioral Study of Humanitarian Transportation Planning

View at Publisher

Understanding the information needs of field-based decision-makers in humanitarian response to sudden onset disasters

Improving supply chain disaster preparedness: A decision process for secure site location

View at Publisher
Holguín-Veras, J., Jaller, M., Van Wassenhove, L.N., Pérez, N., Wachtendorf, T.

Material convergence: Important and understudied disaster phenomenon

doi: 10.1061/(ASCE)NH.1527-6996.0000113

View at Publisher

Holguín-Veras, J., Amaya-Leal, J., Cantillo, V., Van Wassenhove, L.N., Aros-Vera, F., Jaller, M.

Econometric estimation of deprivation cost functions: A contingent valuation experiment

doi: 10.1016/j.jom.2016.05.008

View at Publisher

(2005) Mapa de peligros, plan de usos de suelos y medidas de investigación ante desastres
INDECI, Lima

INDECI, Lima

(2014) Plan Logístico
INDECI, Lima

Séptimo Boletín Estadístico Virtual del INDECI de la Gestión Reactiva
<table>
<thead>
<tr>
<th>No.</th>
<th>Author(s)</th>
<th>Title</th>
<th>Year</th>
<th>Journal</th>
<th>Volume</th>
<th>Pages</th>
<th>DOI</th>
<th>Cited Times</th>
<th>Publisher View</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>Jabareen, Y.</td>
<td>Planning the resilient city: Concepts and strategies for coping with climate change and environmental risk</td>
<td>2013</td>
<td>Cities</td>
<td>31</td>
<td>220-229</td>
<td>10.1016/j.cities.2012.05.004</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Keck, M., Sakdapolrak, P.</td>
<td>What is social resilience? lessons learned and ways forward</td>
<td>2013</td>
<td>Erdkunde</td>
<td>67 (1)</td>
<td>5-19</td>
<td>10.3112/erdkunde.2013.01.02</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Kiefer, A.W., Novack, R.A.</td>
<td>An empirical analysis of warehouse measurement systems in the context of supply chain implementation</td>
<td>1999</td>
<td>Transportation Journal</td>
<td>38 (3)</td>
<td>18-26</td>
<td></td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>
http://www.kluweronline.com/issn/0254-5330
doi: 10.1007/s10479-018-2882-3

View at Publisher

http://journals.sagepub.com/loi/cmr

View at Publisher

http://emeraldgrouppublishing.com/jhlscm.htm
doi: 10.1108/JHLSCM-04-2012-0008

View at Publisher

http://emeraldgrouppublishing.com/jhlscm.htm
doi: 10.1108/JHLSCM-08-2017-0040

View at Publisher
53 Meerow, S., Newell, J.P., Stults, M.
Defining urban resilience: A review
doi: 10.1016/j.landurbplan.2015.11.011
View at Publisher

54 Morana, J.
La logistique urbaine durable de demain

55 (2005) Mapa de peligros, plan de usos de suelos y medidas de investigación ante desastres
Municipalidad de Lurigancho, Lima

56 (2015) Observatorio Nacional de Seguridad Ciudadana
OBNASEC, Lima

57 Muñoz, W.
(2016) Diagnóstico sobre el fortalecimiento de capacidades locales y la empleabilidad femenina en el distrito de Lurigancho-Chosica
Universidad Católica Sedes Sapientia, Lima

OSCHA, Panama
Naor, M., Bernardes, E.
Self-sufficient healthcare logistics systems and responsiveness: ten cases of foreign field hospitals deployed to disaster relief supply chains

Noyan, N.
Risk-averse two-stage stochastic programming with an application to disaster management
www.elsevier.com/inca/publications/store/3/0/0/
doi: 10.1016/j.cor.2011.03.017
View at Publisher

Cómo desarrollar ciudades más resilentes. Cited 2 times.
ONU, Ginebra

Peres, E.Q., Brito, I., Leiras, A., Yoshizaki, H.T.Y.
Humanitarian logistics and disaster relief research: trends, applications, and future research directions

Pindyck, R.S., Wang, N.
The economic and policy consequences of catastrophes
http://pubs.aeaweb.org/doi/pdfplus/10.1257/pol.5.4.306
doi: 10.1257/pol.5.4.306
View at Publisher
(2011) Decreto Supremo 059-2011-PCM
PCM, Lima

(2011) Ley No. 29664, del Sistema Nacional de Gestión del Riesgo de Desastres
PCM, Lima

PCM, Lima

(2015) Resolución Ministerial 219-2016-PCM
PCM, Lima

(2017) Plan integral de reconstrucción con cambios
PCM, Lima

Rawls, C.G., Turnquist, M.A.

Pre-positioning of emergency supplies for disaster response

doi: 10.1016/j.trb.2009.08.003

View at Publisher
70 Rawls, C.G., Turnquist, M.A.
Pre-positioning planning for emergency response with service quality constraints
doi: 10.1007/s00291-011-0248-1
View at Publisher

71 Rennemo, S.J., Rø, K.F., Hvattum, L.M., Tirado, G.
A three-stage stochastic facility routing model for disaster response planning
View at Publisher

72 Roh, S.-Y., Jang, H.-M., Han, C.-H.
Warehouse location decision factors in humanitarian relief logistics (Open Access)
http://www.journals.elsevier.com/the-asian-journal-of-shipping-and-logistics
doi: 10.1016/j.ajsl.2013.05.006
View at Publisher

73 Saaty, T.L.
Decision making with the analytic hierarchy process
https://doi.org/10.1504/IJSSCI.2008.017590
Schrage, L.

doi: 10.1002/net.3230110212

View at Publisher

Schrage, L.

Guide to simulation

doi: 10.1016/0377-2217(89)90358-5

View at Publisher

Shane, B.S., Jan, R.B.

(2005) Anann nudges donors to make good on full pledges
New York Times, January 7, 2-5

Sheffi, Y.

MIT Press, Cambridge

Sokat, K.Y., Zhou, R., Dolinskaya, I.S., Smilowitz, K., Chan, J.

Capturing real-time data in disaster response logistics

(2017) Normas Legales
SUNAT, Lima, p. 10
Formulating multi-objective stochastic dynamic facility layout problem for disaster relief

http://www.kluweronline.com/issn/0254-5330
doi: 10.1007/s10479-017-2592-2

© Copyright 2019 Elsevier B.V., All rights reserved.