
171

Metrics to Understand Future Maintenance Effort Required of Complicated Source Code / Dorin, Montenegro

Metrics to Understand Future Maintenance
Effort Required of a Complicated Source Code

Michael Dorin
mike.dorin@stthomas.edu / Universität Würzburg. Würzburg, Germany

Sergio Montenegro
sergio.montenegro@uni-wuerzburg.de / Universität Würzburg. Germany

Recepción: 17-6-2019 / Aceptación: 9-7-2019

Abstract. An enduring engineering problem is the creation of a source code too compli-
cated for humans to review and understand. A consequence of a complicated source code is
that it requires more effort to be implemented and maintained. Exacerbating the problem is a
lack of a proper understanding of exactly what the words “complicated” and “complex” mean,
as the definitions of these words are often misconstrued. Some systems are indeed inherently
complex, but this does not mean they must be complicated. In our research, several open-
source projects were evaluated using software metrics to map the complicatedness of a source
code with the ongoing effort to sustain the project. The results of our research show that a
relationship exists between a complicated source code and the maintenance effort. It is clear
that adhering to proper coding practices and avoiding a complicated code can result in a much
more manageable future maintenance effort.

Keywords: analysis, metrics, complex, complicated, source code

Métricas para comprender el esfuerzo de mantenimiento futuro requerido de
un código fuente complicado

Resumen. Un problema de ingeniería duradero es la creación de código fuente demasiado
complicado para que los humanos lo revisen y comprendan. Una consecuencia del código
fuente complicado es que requiere más esfuerzo para implementar y mantener. Lo que exacer-
ba el problema es la falta de una comprensión adecuada de lo que significan exactamente las
palabras “complicado” y “complejo”, ya que estas definiciones a menudo se interpretan mal.
Algunos sistemas son realmente intrínsecamente complejos, pero esto no significa que deban
ser complicados. En nuestra investigación, se evaluaron varios proyectos de código abierto
utilizando métricas de software para mapear la complejidad del código fuente con el esfuerzo
continuo para mantener el proyecto. Los resultados de nuestra investigación muestran que
existe una relación entre el código fuente complicado y el esfuerzo de mantenimiento. Está
claro que adherirse a las prácticas de codificación adecuadas y evitar el código complicado
puede resultar en un esfuerzo de mantenimiento futuro mucho más manejable.

Palabras clave: análisis, métricas, código fuente complejo, complicado

172

INNOVANDO LA EDUCACIÓN EN TECNOLOGÍA. Actas del II Congreso Internacional de Ingeniería de Sistemas

1. INTRODUCTION

Life on earth presents humans with some very complex and complicated concepts. It is easy
for people to suppose that cancer and quantum mechanics are both complex and complicated,
as they are defined like that by nature. The best humans can do is to make simplified model
representations of complex physical phenomena. Software development is unique in the world
of science and math, such that developers can choose if our work is going to be complicated.

Our research begins by examining and affirming the definitions of complicated and
complex. Afterward, the consequences of complicated are measured with a thorough exami-
nation of the bug reports and the source code of prominent software projects. The analysis
focused on the components of a LAMP server (Linux, Apache, MySQL, PHP). The results
of this work show that when a source code becomes complicated, it requires more effort to
sustain. By establishing the indicators of complicated and complex, a protocol can be defined to
reduce the development of complicated software. As mentioned before, regardless of problem
complexity, developers can choose whether their code will be complicated.

2. BACKGROUND

Complicated and Complex

The words complicated and complex are often misconstrued, and it is possible to have an unders-
tanding that the two words mean the same thing. This fact becomes evident when we review
standard definitions of the words, as it can be challenging to notice the differences. For example,
a standard definition of complicated indicates that something complicated is composed of
interconnected parts and is difficult to analyze (Mish, 2004). Similarly, something complex is
“composed of many interconnected parts; compound; composite” (Mish, 2004). These defi-
nitions almost sound identical.

The etymology of the word complicated shows the Latin root “plic,” which means “to
fold”. The word complex has the Latin root “plex,” which means “to weave”. Something that is
woven has many strands, but the strands can be well organized. When “fold” is used as a suffix,
it means a “multiple”. Something complicated can have fragments folded in, making it concep-
tually tricky to understand (Lissack, 1999).

Finally, when we consider whether something is complicated, we must acknowledge
that, many times, something is complicated when it is not understood. Upon understanding a
topic, it is often no longer complicated. With this in mind, consider that the number of people
involved also plays a role in creating complicatedness. Having more people involved means
that it is more likely that a single person will not understand it.

173

Metrics to Understand Future Maintenance Effort Required of Complicated Source Code / Dorin, Montenegro

Git

The use of features found in Git was an essential part of this research. Git is a prevalent and
heavily utilized version control system developed in 2005 by Linus Torvalds (Spinellis, 2012).
Logs created by Git were used extensively and were examined using the Git log command. A
python script was used to parse the logs which focused on Git commits. A Git commit means
that a file was created or updated and stored in a local Git repository (Torek, 2019).

Static Analysis

Static analysis examines a program source code without actually executing the program.
One of the first tools for performing static analysis was Lint, created in 1978 (Bardas, 2010).
Static analysis has improved considerably since then and bugs flagged by the original Lint
are now included in the compiler output. Many static analysis tools exist at this time, and
the various tools specialize in different areas (Bardas, 2010). This study used the Cppcheck
tool (Marjamäki, 2019) as it looks for multiple types of errors and is easy to run immediately
without integrating it into a functioning build.

Measurements and Metrics

Attempting to understand complications and complexity is not a new concept, and several
metrics have been invented throughout the decades to quantify these subjects. The first metric
would merely be counting lines of code and reporting using units such as LOC (lines of code)
and KLOC (thousands of lines of code). In 1976, Thomas McCabe developed the cyclomatic
complexity metric, which is a measure of the number of linearly independent paths through
a program (McCabe 1976). In 1977, Maurice Halstead published complexity metrics based
on distinct operators, distinct operands, the total number of operators, and the total number
of operands (Halstead, 1977). Using Halstead attributes, a value for difficulty and effort is
made. Both Halstead and McCabe metrics have been both praised and criticized, but they are
relatively simple and practical contributions to the software engineering community. More
advanced metrics exist, but as this research is focused on identifying complexity and compli-
catedness, we have decided to use uncomplex and uncomplicated metrics as part of our work.

3. RELATED WORK

Existing Literature

Several research studies that consider the human aspects of a complicated source code have
been conducted. Daniel Sturtevant has done an excellent work in his thesis for MIT describing

174

INNOVANDO LA EDUCACIÓN EN TECNOLOGÍA. Actas del II Congreso Internacional de Ingeniería de Sistemas

the impact of software architectural design, and connecting it to employee productivity and
staff turnover. He worked with a professional organization, and included a case study of a
development project which shows that the structure of a software system does impact produc-
tivity and employee retention. Sturtevant points out that further research on different types of
projects is warranted, and that there are many opportunities for this (Sturtevant, 2013).

Human considerations are further explored in the paper from Foucault et al. (2015)
researching the impact that developer turnover has on software quality. This paper covers
open-source software, and demonstrates a link between developer turnover and the number
of bugs found in the project (Foucault, 2015). Interestingly, Foucault and Sturtevant do not
entirely agree on the aspect of whether poorly designed software drives developers away or
whether the turnover creates a poorly designed software.

The turnover of developers might also be a reason for code churn as described in the
paper Use of Relative Code Churn Measurements to Predict System Defect Density (Nagappan.
2005). Code churn is a metric based on how much the code is changed, and this metric has
been shown to be an indicator of faults. It is suggested that more recent code is faultier than
the original code (Nagappan, 2015).

Other papers analyzed measurable aspects of software itself, rather than human influence.
In the article Reexamining the Fault Density - Component Size Connection, Les Hatton discusses
the relationship with the size of the program and the number of faults. Lines of code (LOC)
has always been a good predictor of fault opportunities, and it is intuitively apparent why
(Hatton, 1997). A four-line “Hello World” program will have fewer opportunities for faults
than a four thousand-line program. Having more lines offers more opportunities for mistakes.
Though LOC is a good indicator of bug opportunities, it also does not help you narrow down
specific locations where faults may be present.

Previous Project Work

In a previous work on this project, we determined which programming practices software was
the most difficult for engineers. We discovered what engineers misinterpret and what software
engineers find displeasing to review. Also, a consistent unpleasant to review code had a higher
Halstead and cyclomatic complexity. Stylistic constructs that programmers generally have
difficulty evaluating are shown in Table 1 (Dorin, 2018).

175

Metrics to Understand Future Maintenance Effort Required of Complicated Source Code / Dorin, Montenegro

Table 1
Unpleasant Styles (Dorin, 2018)

Style Name

Avoid too deep blocks

Do not write over 120 columns per line

Matching braces should be in the same column

Use less than five parameters

Use braces even for one statement

Indent blocks inside a function

For measuring project conformance with stylistic rules, the nsiqcppstyle tool (Yoon,
2014) was used. Using this previously developed knowledge in a complex and complicated
code, we are now expanding the work to develop indicators to relate a complicated source code
to this ongoing effort.

4. METHODOLOGY

Existing literature covers a lot of important subjects, but many papers seem to be specific to
particular cases and specific environments. In this project, we reviewed several active open-
source projects maintained by Git. Popular projects were preferred as they gave the most
opportunities for users to report bugs. GitHub.com was used as a source for all the projects.
The four cornerstone projects selected were Linux, Apache, MySQL, and PHP. The remaining
projects were found based on a report of active projects on GitHub. Once projects were found,
the following steps were performed:

1. Calculation of thousands of lines of code (KLOC) for C, C++, and headers. The
amount of information given to a human to process is a factor in how much can be
understood. For each project, for each source related file, we used the Lizard tool
(Yin, 2019) to calculate the lines of code in both source files and headers.

2. Calculation of Halstead for C, C++, and headers. The Halstead metric, which
evaluates complexity based on distinct operators, distinct operands, the total number
of operators, and the total number of operands, was also used in this study. For each
project, we used a program called commented code detector (Borowiec, 2014) to
measure the Halstead metrics.

176

INNOVANDO LA EDUCACIÓN EN TECNOLOGÍA. Actas del II Congreso Internacional de Ingeniería de Sistemas

3. Calculation of McCabe cyclomatic complexity for C, C++, and headers. The McCabe
cyclomatic complexity metric is based on the number of linearly independent paths
through code. The cyclomatic complexity was used because more paths require more
effort to understand. The Lizard tool (Yin, 2019) was also used to gather informa-
tion on cyclomatic complexity for each project.

4. Determination of “bug”-sized changes. Several small utilities were written to analyze
the logs maintained by Git. When searching for keywords, we determined the typical
number of lines of code found in bugs and thus classified bugs by size. We classified tiny
bugs as “gnats,” as they are important for consideration since numerous small bugs take
resources away from developing essential features. The gnat-sized bugs constitute 50%
of the Git check-ins, which is a good indication of how bothersome they are.

5. Measurement of conformance to stylistic rules. From our previous work, we determined
what was essential and what rules had the most impact on programmer understan-
ding. As with our past projects, we used the nsiqcppstyle tool to measure stylistic rule
conformance.

6. Measurement of basic coupling between modules. Though many utilities exist for
measuring coupling, they were not practical for our use. For coupling, we created
a straightforward metric which we called Sheficom. The Sheficom metric computes
how many external modules are coupled using a count of the number of headers in
the module. Sheficom is based on the assumption that, if a module is not coupled, it
would not need to include a header.

7. Measurement of the percentage of bug-related changes. The goal of this effort was to
measure how much work in a project was dedicated to bug fixes. By using the tech-
nique outlined in Item 4 to identify bugs, the percentage of bug-related changes was
measured. We counted the aggregate number of complete bugs as well as the total
number of lines changed for fixing bugs.

8. Count of the number of authors. As mentioned, one of the natures of being compli-
cated is the absence of understanding. More programmers mean more people are
required to understand the source code. Depending on the communication paths and
capabilities of the authors, understanding could be impacted.

9. Performance of static analysis of modules. The Cppcheck tool (Marjamäki, 2019) was
used to perform static analysis on the source code. This tool was chosen as it does not
require performing any special actions or creating special configurations to analyze
the source code, but it will provide an estimate of errors which exist in the project.

177

Metrics to Understand Future Maintenance Effort Required of Complicated Source Code / Dorin, Montenegro

Table 2

Metric Software
Complexity

Human
Complication

Size X

Style X

Sheficom (coupling) X

Author Turnover X

Halstead X

Cyclomatic X

These metrics were used to get a picture of the effort needed for ongoing maintenance
work. All of the metrics, in one way or another, contribute to impacting effort. However, some
metrics have a more significant influence on what humans perceive as complicated (see Table 1).
For example, in the new Sheficom metric, tightly coupled modules take a human longer to
review and therefore more time to understand. It is plausible that a human, with enough time,
could understand what is going on. At that point, though it remains complex, the code is no
longer complicated. Author turnover was also essential to measure, as new authors require
time to build up an understanding of the existing code.

5. RESULTS

Linux

Linux is a very well-established operating system and, for this study, we performed measure-
ments every year for ten years, starting in 2008. See Table 3 and Figure 2 for a summary of the
results. When examining the coding style, it seems to conform less year by year (see Figure 2).
Improvements in module coupling and cyclomatic complexity are apparent. However, the size
of the project grows linearly over time, and the number of static analysis detected bugs per
snapshot also increases over time. More than forty percent of the effort to continue Linux
seems to be changes related to bugs, as shown in Table 3. One more thing to bear in mind is
that Linux has a lot of authors working on the project, which will contribute to the project
being more complicated. It seems that a lot of authors and a lot of code lead to misunderstan-
dings, and a lot of effort is spent fixing bugs rather than adding new functionality.

178

INNOVANDO LA EDUCACIÓN EN TECNOLOGÍA. Actas del II Congreso Internacional de Ingeniería de Sistemas

������ ������������
Style
She�com

Halstead
Cyclomatic

Bug Commits
Bug Changes

Cppcheck

KLOC
Existing Authors

���� ��� ���� ���� ���� ���� ���
 ���	 ���� ���� ����
43 %

12.55
51.46

4.5
5646
48 %

51 %
45 %

6247

43 %

12.36
51.06

4.5
7045
51 %

41 %
43 %

6219

43 %

12.6
50.48

4.4
79.66

54 %

41 %
42 %

10371

42 %

12.78
51.3

4.4
8673
55 %

43 %
39 %

12889

42 %

12.58
51.54

4.4
9521
58 %

46 %
39 %

14406

41 %

12.42
52.12

4.3
10459

60 %

52 %
39 %

15551

40 %

12.26
54.24

4.3
11090

57 %

47 %
40 %

17127

40 %

12.16
55.19

4.3
11941

59 %

40 %
41 %

16530

40 %

12.1
55.72

4.3
12938

62 %

46 %
43 %

18317

40 %

12.15
55.2

4.3
14094

61 %

55 %
43 %

19979

39 %

11.94
57.96

4.3
14519

64 %

69 %
43 %

21494

Figure 1. Linux Year-by-Year Results

Apache

The results of the analysis of Apache are listed in Figure 3 and Table 4. As far as significant
projects go, Apache does an outstanding job with the level of effort dedicated to bug fixes
versus improvements (~32% for bug fixes). A positive aspect of Apache is that many authors
remain from release to release (~85%), which means understanding can remain high, thus
reducing the impact of a complicated code. We can also see improvements to cyclomatic
complexity. Though Halstead measurements remain pretty steady, the coupling is pretty cons-
tant, and the style is pretty steady. Even the Cppcheck static analysis snapshot remains steady.

������ ������������
Style
She�com

Halstead
Cyclomatic

Bug Commits
Bug Changes
Cppcheck

KLOC
Existing Authors

���� ��� ���� ���� ���� ���� ���
 ���	 ���� ���� ����
33.3 %

10.7
61.47

7.57
143

81 %

14 %
25 %

60

31.6 %

10.65
62.42

6.74
125

85 %

43 %
30 %

68

31.0 %

10.74
63.06

6.75
131

85 %

37 %
37 %

58

32.3 %

10.99
62.94

6.68
139

91 %

41 %
31 %

61

32.3 %

10.92
62.63

6.68
151

75 %

98 %
35 %

58

32.7 %

11
63.4
6.63
162

92 %

28 %
32 %

64

31.9 %

11.27
63.67

6.64
170

78 %

9 %
34 %

65

32.6 %

11.56
61.14

6.5
178

77 %

18 %
30 %

64

32.1 %

11.88
62.28

6.44
189

86 %

21 %
27 %

64

31.8 %

11.81
62.76

6.37
196

94 %

26 %
32 %

67

31.0 %

12
62.2
6.23
209

93 %

26 %
31 %

68

Figure 2. Apache Year-by-Year Results

179

Metrics to Understand Future Maintenance Effort Required of Complicated Source Code / Dorin, Montenegro

MySQL

The results for MySQL are listed in Figure 4 and Table 5. MySQL has dramatically increased
in the number of lines of code. Note the codebase growth between 2015 and 2018, where
a large amount of code was added. Along with the dramatic increase in the number of lines
of code, the coupling (Sheficom) has also increased. Also, the problems predicted by static
analysis (Cppcheck) have increased, and most importantly, the amount of effort spent on
fixing bugs has also increased over time.

������ ������������
Style
She�com

Halstead
Cyclomatic

Bug Commits
Bug Changes
Cppcheck

KLOC
Existing Authors

���� ��� ���� ���� ���� ���� ���
 ���	 ���� ���� ����
39 %

6.02
71.08

4.54
904

46 %

33 %
60 %
116

38 %

6.07
71.4
4.55
923

58 %

37 %
50 %
119

38 %

6.79
71.3
4.54

1160
66 %

34 %
41 %
124

39 %

7.04
70.6
4.38

1204
71 %

30 %
66 %
130

40 %

7.76
72.12

4.11
1493
66 %

35 %
59 %
143

41 %

8.06
69.78

4.09
1571
73 %

36 %
66 %
224

41 %

8.18
69.13

4.03
1674
73 %

40 %
61 %
259

44 %

8.66
66.12

3.9
1833
67 %

37 %
65 %
278

45 %

9.1
64.21

3.6
2066
82 %

41 %
65 %
312

48 %

13.07
62.15

3.52
2581
77 %

42 %
70 %
422

42 %

13.67
62.48

3.68
2715
92 %

42 %
95 %
518

Figure 3. MySQL Year-by-Year Results

PHP

PHP has conditions showing a more complicated code in several areas, as shown in Figure 5.
Style conformance has dropped while the number of lines of code has grown. The number of
veteran authors has fluctuated, contributing to only a few people having an ongoing unders-
tanding of the code. Halstead and cyclomatic complexity both indicate a complicated code in
this product, which will also negatively impact new authors joining the project. PHP is spen-
ding about half of their time fixing issues rather than adding new features.

������ ������������
Style
She�com

Halstead
Cyclomatic

Bug Commits
Bug Changes

Cppcheck

KLOC
Existing Authors

���� ��� ���� ���� ���� ���� ���
 ���	 ���� ���� ����
42 %

6.47
115.1

7.68
600

59 %

41 %
54 %
466

43 %

6.95
134.1

7.65
789

83 %

38 %
61 %
562

44 %

6.86
131.6

7.69
733

80 %

31 %
59 %
558

43 %

7.25
128.2

7.65
745

84 %

64 %
59 %
640

43 %

7.39
131.8

7.74
812

49 %

75 %
41 %
663

43 %

7.34
127.5

7.82
836

45 %

65 %
36 %
694

43 %

7.31
131.6

7.77
900

53 %

77 %
37 %
692

43 %

12.16
55.19

4.3
11941

59 %

40 %
41 %

16530

43 %

7.22
134.0

8.27
1036
42 %

50 %
30 %
257

42 %

7.18
151.9

8.23
1183
45 %

79 %
25 %
362

41 %

7.18
151.1

8.19
1234
64 %

40 %
24 %
370

Figure 4. PHP Year-by-Year Results

180

INNOVANDO LA EDUCACIÓN EN TECNOLOGÍA. Actas del II Congreso Internacional de Ingeniería de Sistemas

ImageMagic

Finally, the results for the ImageMagic project were also analyzed and are shown in Figure 6. In
this project, style conformance is not that much different from other projects. Measurements
like Halstead and cyclomatic complexity are not superb either. However, note the strong
connection between existing authors and bug changes. After 2014, a decrease in existing
authors coincides with a dramatic increase in bug efforts. The amount of energy spent on bugs
impacted the amount of effort on new features as new authors arrived.

������ ������������
Style
She�com

Halstead
Cyclomatic

Bug Commits
Bug Changes

Cppcheck

KLOC
Existing Authors

���� ���� ���� ��� ���� ���� ���
 ���	 ����
40 %

17.24
12.79

9.1
287

75 %

40 %
5 %
19

41 %

18.13
12.08

9.4
297

100 %

0 %
3 %
24

41 %

17.93
11.47

9.4
314

100 %

1 %
27 %

35

40 %

18.77
11.69

9.4
315

80%

2%
5%
31

40 %

19.05
11.51

9.1
335

100 %

18 %
13 %

26

40 %

19.2
11.43

9.2
341

44 %

11 %
17 %

24

41 %

19.96
11.73

9.3
342

14 %

8 %
27 %

11

40 %

20.04
11.71

9.4
346

12 %

21 %
34 %

11

40 %

19.5
11.3

9.5
353

11 %

38 %
47 %

11

Figure 5. Image Magic Year-by-Year Results

6. DISCUSSION

This study used several metrics as a means of identifying how complicated a project’s source
code is. The metrics covered different areas related to a complicated code, including author
turnover and module coupling. The most significant metrics seem to be the size of the project
and how many human contributors there are. All software engineers have had the experience
that something is initially complicated, but as time goes by and more effort is applied, the
project gets less complicated. The metrics related to software complexity, as shown in Table 1,
seemed to be consistent year over year on most of the projects. More successful projects main-
tain veteran programmers on their teams, as it would seem that new authors are not as effective.
Complexity metrics, as shown in Table 1, are a harbinger of how long it may take new authors to
understand the code and be productive. Projects with veteran programmers consistently show
that less time and effort is required for addressing bugs in the maintenance process.

181

Metrics to Understand Future Maintenance Effort Required of Complicated Source Code / Dorin, Montenegro

 Table 3
Average Results

Category Linux Apache MySQL PHP ImageMagic

Lines of Code 14,510,383 208,994 2,714,775 1,233,536 353,088

Lines of Code
(average by year)

10,354,856 162,894 1,647,628 892,846 325,549

Style Conformance 41% 32% 42.84% 42.57% 40.33%

Cyclomatic
Complexity

4.36 6.7 4.1 7.9 9.31

Halstead Difficulty 53.69 62.55 68.20 133.84 11.74

Halstead Effort 19,878.92 24,169.54 39,801 65,720 47,475.5

Coupling
(Sheficom)

12.35 11.23 8.58 7.13 18.66

Authors Year-by-Year

Average Number 3,336 23 127 88 9

Average Veterans 57% 85% 70% 41.82% 60%

Bug Effort (commits vs. changes)

Commit Count 41% bugs 31.22% bugs 37% bugs 47% bugs 19.63% bugs

Changes 48% bugs 32.4% bugs 63% bugs 56% bugs 15.43% bugs

Gnat-Sized Bug 15 lines 12 lines 25 lines 9 lines 7 lines

Static Analysis
Error Snapshot

14,675 64 240 500 21

7. RISKS TO VALIDITY

Several difficulties had to be addressed when doing this project. One difficulty was ascertai-
ning the number of bugs in a project. Often developers find and fix bugs without mentioning
them in bug tracking systems. It is also possible that a single “Git commit” has multiple bug
fixes included. To overcome this, we evaluated bug-sized fixes and compared them to “Git
commits” in general. We may be overestimating or underestimating the bug count. Another
area of risk is based on the tools selected. These tools were all available open source and easy to
find. However, an exhaustive test on the tools was not performed as part of this study.

182

INNOVANDO LA EDUCACIÓN EN TECNOLOGÍA. Actas del II Congreso Internacional de Ingeniería de Sistemas

Finally, an understanding of the terms complex and complicated is difficult to arrive at, as
humans will all perceive these concepts differently. Something may be thought complicated,
but after some time and understanding, the judgment of complicated no longer seems accurate.

8. CONCLUSION

The paper shows that there are consequences to having a complicated code. Many aspects play
a part in how complicated a source code is, but the most significant contributors seem to be
the size of the project and the number of authors participating. More lines of code mean more
to understand. The more authors who participate in a project, the more people who need to
understand its code. These factors contribute to an increased amount of time spent fixing bugs
as opposed to improving the product.

Simple metrics, as used in this paper, can be employed to identify complicated areas of
a project. Areas that are identified as complicated by the metrics imply it will take longer
to understand those portions of the code. The longer it takes to understand, the more effort
required for bug fixing. If a code is hard to understand, new authors will not be able to come
up to speed quickly, and existing authors may not wish to remain on the project. Projects need
to maintain loyal authors or spend more time on fixing problems instead of adding features.

 Areas for future study include more effort mapping static analysis back to a complicated
code and measuring how many identified areas remain in a delivered product. The second area
of prospective study would be to focus on projects which follow all the rules established and
verify if such projects truly have fewer errors than those which ignore these rules.

REFERENCES

Bardas, A. G. (2010). Static code analysis. Journal of Information Systems & Operations
Management, 4(2), 99-107.

Borowiec, D. (2014). Commented Code Detector. Retrieved June 16, 2019, from https://
https://github.com/dborowiec/commentedCodeDetector

Dorin, M. (2018, May). Coding for inspections and reviews. In Proceedings of the 19th
International Conference on Agile Software Development: Companion (p. 34). ACM.

Foucault, M., Palyart, M., Blanc, X., Murphy, G. C., & Falleri, J. R. (2015, August). Impact of
developer turnover on quality in open-source software. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering (pp. 829-841). ACM.

183

Metrics to Understand Future Maintenance Effort Required of Complicated Source Code / Dorin, Montenegro

GitHub. (2019). Build software better, together. Retrieved June 16, from https://github.com/

Halstead, M. H. (1977). Elements of software science (Vol. 7, p. 127). New York: Elsevier.

Hatton, L. (1997). Reexamining the fault density component size connection. IEEE software,
14(2), 89-97.

Kobashi, Y., Fukuda, M., Yoshida, K., Miyashita, N., Niki, Y., & Oka, M. (2006). Chronic
necrotizing pulmonary aspergillosis as a complication of pulmonary Mycobacterium
avium complex disease. Respirology, 11(6), 809-813.

Lissack, M., & Roos, J. (1999). The next common sense: Mastering corporate complexity through
coherence. Nicholas Brealey Publishing.

Manser, M. (2004). Good Word Guide. Bloomsbury Publishing UK.

Marjamäki , D. (2019). Cppcheck. Retrieved June 16, 2019, from http://cppcheck.
sourceforge.net

McCabe, T. J. (1976). A complexity measure. IEEE Transactions on software Engineering, (4),
308-320.

Mish, F. C. (Ed.). (2004). Merriam-Webster’s collegiate dictionary. Merriam-Webster.

Nagappan, N., & Ball, T. (2005, May). Use of relative code churn measures to predict system
defect density. In Proceedings of the 27th international conference on Software engineering
(pp. 284-292). ACM.

Spinellis, D. (2012). Git. IEEE software, 29(3), 100-101.

Sturtevant, D. J. (2013). System design and the cost of architectural complexity (Doctoral
dissertation, Massachusetts Institute of Technology).

Torek, A. C. Distributed Version Control With Git And Mercurial. Retrieved June 16, 2019,
from http://web.torek.net/torek/tmp/book.pdf

Yin, T. (2019). Lizard. Retrieved June 16, 2019, from https://github.com/terryyin/lizard

Yoon and K. Tyagi. (2014) nsiqcppstyle. Retrieved June 16, 2019, from https://github.
com/kunaltyagi/nsiqcppstyle

