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Abstract: Botnets are some of the most recurrent cyber-threats, which take advantage of the wide 

heterogeneity of endpoint devices at the  Edge  of  the  emerging  communication  environments for 

enabling the malicious enforcement of fraud and other adversarial tactics, including malware, data 

leaks or denial of service. There have been significant research advances in the development of 

accurate botnet detection methods underpinned on supervised analysis but assessing the accuracy 

and performance of such detection methods requires a clear evaluation model in the pursuit of 

enforcing proper defensive strategies. In order to contribute to the mitigation of botnets, this paper 

introduces a novel evaluation scheme grounded on  supervised  machine  learning  algorithms  that 

enable the detection and discrimination of different botnets families on real operational 

environments. The proposal relies on observing,  understanding and inferring the behavior of   each 

botnet family based on network indicators measured at flow-level. The assumed evaluation 

methodology contemplates six phases that allow building a detection model against botnet-related 

malware distributed through the network, for which five supervised classifiers were instantiated 

were instantiated for further comparisons—Decision Tree, Random Forest, Naive Bayes Gaussian, 

Support Vector Machine and K-Neighbors. The experimental validation was performed on two public 

datasets of real botnet traffic—CIC-AWS-2018 and ISOT HTTP Botnet. Bearing the heterogeneity of 

the datasets, optimizing the analysis with the Grid Search algorithm led to improve the classification 

results of the instantiated algorithms. An exhaustive evaluation was carried out demonstrating the 

adequateness of our proposal which prompted that Random Forest and Decision Tree models are the 

most suitable for detecting different botnet specimens among the chosen algorithms. They exhibited 

higher precision rates whilst analyzing a large number  of  samples  with  less  processing time. The 

variety of testing scenarios were deeply assessed and reported to set baseline results for future 

benchmark analysis targeted on flow-based behavioral patterns. 
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1. Introduction 

Computer systems are constantly threatened by a diversity of attackers (hackers, traitors, terrorists 

or even governments) who intentionally compromise the integrity, availability of confidentiality of 

the protected assets. Driven by different motivations, their final goal is to take advantage of specific 

system vulnerabilities that will enable them to conduct cyber attacks [1–3]. Among the most common 

security threats, malware infections, web related attacks, phishing, denial of service, spam and 

botnets are the most prevalent according to the Threat Landscape Report released by the European 
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Union Agency for Cybersecurity (ENISA) in 2018 [4]. A botnet is a network of compromised nodes 

(“Bots”) connected to a centralized node (“Command and Control”) administered by a human operator 

(“Botmaster”) who remotely controls the Bots [5,6]. The term “botnet” is derived from the words 

“robot” and “network”, which evokes the Bots’ autonomy to perform several tasks. Botnets are in fact 

key enablers of several other cyber-attacks, hence representing one of the most serious threats  in the 

area of network security [7–9]. Having this scenario in mind, organizations need to endorse the 

preparedness of their infrastructures in order to reactive/proactive deal with security incidents 

related to botnets [10], on which the emerging network management paradigms raise as promising 

cybersecurity enablers [11,12]. The absence of proper defensive countermeasures against them might 

prompt security concerns for publicly accessible systems, being that botnets have the ability to infiltrate 

any device connected to the Internet. The attackers lead their victims to infect their own system in 

order to recruit potential bots, thus harming the targeted systems. That is accomplished by taking 

advantage of common attack vectors such as phishing messages, host vulnerabilities exploitation, 

brute-forcing and related techniques [4,6,13]. 

Defense countermeasures against Botnet threats entail detection as their primary objective. 

Different approaches to detect malware have been proposed over the past years, mostly underpinned 

on network mining techniques, machine learning, deep learning and, in a broader sense, data-driven 

intrusion detection methods [14]. The literature review suggests machine-learning-based approaches 

as the most effective when dealing with botnet detection and, among them,  the  supervised  analysis 

of behavioral patterns in network flows drives the detection of different types of botnets. Srihari et al. 

[15] defined pattern recognition as the ability to categorize an already identified object, characterized 

by a pattern into a class, a task automatically performed using classification algorithms. In the area of 

communication networks, pattern recognition analysis is commonly targeted on studying 

characteristics extracted from network traffic flows, which in the case of botnets disclose relationships 

between the communicating Bot and Command and Control (C&C) server, for instance, to set 

quarantine regions for mitigation purposes [11]. Under such classification-based threat analysis, 

attaining acceptable detection rates is highly tied to the configuration of hyperparameters set up for 

training the machine learning models. Even though some heuristic approaches might be implemented 

for hyperparameters estimation, more advanced methods such as Grid Search have been effectively 

used to boost up the performance of machine learning algorithms in the detection of botnets, as it was 

demonstrated by Gonzalez-Cuautle et al. [16]. In terms of classification accuracy, most of the research 

works on this field describe their results reasonably enough to put into perspective the adequateness 

of the machine learning models guided by the results obtained,  thus posing a reference baseline   for 

future research as well. However, shallow learning algorithms widely used in the literature for botnet 

detection [17] raise concerns regarding their accuracy since the configuration details on training, testing, 

validation and real predictive capabilities are sometimes overlooked. Consequently, deviations on the 

attained accuracy results might arise when machine-learning-based defensive schemes are 

implemented on real execution scenarios. Their adequateness becomes thereby arguable, particularly 

when tailored to botnet detection due to the lack of replicability conditions. Moreover, in a recent study, 

Singh et al. [18] raised the “problem of comparison” as an open challenge for effective botnet detection, 

stressing the inability of proper datasets and limited implementation descriptions as key constraints 

for which developing a proper comparative methodology is not easy but necessary to significantly 

improve results. 

In order to provide a solid evaluation scheme aimed on proving the real effectiveness of common 
classifiers applied for botnet detection, in this research we perform a thorough comparison between 

a subset of supervised learning methods driven by a well-defined methodology. Our analytical 

approach examines the patterns disclosed by different botnet samples when exchanging network data 

from the zombie machine (bot) to the (C&C) server, defining six well-known supervised algorithms 

for further comparisons. Thereby, our object of study is the detection of botnets grounded on 

communication metrics measured at network flow level. To this outcome, we aim on developing robust 
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machine learning models capable to deal with different botnet families for which network samples are 

gathered from real execution testbeds. On the other hand, performing classification with unbalanced 

data lead to unexpected behaviours unless a proper modeling is undergone. To tackle such limitations 

on reference data samples, we deepen into data splitting strategies and calibration procedures carefully 

examined to validate the real detection accuracy for specific botnet specimens.   Our goal is also      to 

generate well-elaborated models evidencing both their real modeling and testing accuracy and 

performance; for which a detailed calibration is provided. Furthermore, the Grid Search algorithm 

lead to optimize each of the model parameters based on the overall accuracy. It is worth stressing that 

our proposed methodology can also be extended to different classification algorithms or botnet 

families provided that the necessary network samples and flow metrics are collected. Bearing those 

considerations in mind, the main contributions of the presented research are listed as follows: 

• In-depth literature review on malware recognition and the supervised learning methods most 

frequently used for botnet detection. Stressing their challenges on the current landscape as well. 

• Understanding the behavior of botnets by analyzing the patterns involving the communication 

between bots and C&C server. Those expressed as network flow-based metrics. 

• A comprehensive comparative methodology based on the selected supervised models by focusing 

the analysis on eight botnet families. 

• Providing a detailed parameterization of the machine learning models, underpinning their optimal 

calibration and their testing and prediction results in the aftermath. 

• An   extended   experimentation   following   the   principles   outlined   above,    along   with    

a comprehensive discussion on the baseline accuracy achieved by similar proposals. 

• Establishing a preliminary set of reference supervised algorithms with the potential of serving as 

benchmarking elements for further research. 

The remaining of this document is structured as follows—Section 2 describes the state of the art 

highlighting the contributions of previous research works on malware and botnet-related detection. 

Section 3 describes the proposed methodology and the design of experiments aimed to validate our 

analysis. A detailed description of the experimental results is presented in Section 4. Then, the results 

discussion is elaborated in Section 5. Finally, the conclusions and future research lines are summarized 

in Section 6. 

2. State of the Art 

An in-depth review of the literature evidences that most of the analytical techniques for malware 

detection are nowadays grounded on artificial intelligence. Among the different malware specimens, 

botnets are the object of study in this research and the analytical approaches for their detection can be 

broadly categorized as those based on graph mining, machine learning and deep learning. For each, 

the following subsections provide a summarized vision of relevant research works stressing their 

advantages and potential drawbacks per evaluation scenario. 

2.1. Graph Mining for Malware Detection 

Wuchner et al. [19] proposed to employ compression-based network mining  using  the  Subdue 

algorithm to find matching subnetworks with the scoring function called “Maximum data 

compression”. Hence, scoring the complexity of the quantitative data flow. Their research aimed to 

define a detection model capable of detecting malware with high accuracy. To this end, the MALICIA 

malware dataset was analyzed. This dataset is composed of 12 malware families such as Zeus, SpyEye 

and Cleaman, among others. To conduct the experiments, the Cuckoo sandbox 2 was deployed to suit 

the execution environment to capture the malware samples. The Subdue algorithm was used to extract 

unknown malware patterns and retain those that meet the level of complexity allowed by applying the 

Singleton pattern. Later, the Matcher classifies previously extracted malware patterns as either benign 

or malicious and which data can be compressed to remove matching subgroups. All patterns that were 
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found to be a match are grouped together in the “Feature Generator” array, which detects whether the 

samples are benign or malicious. This approach was found to be more accurate than frequency-based 

network mining and, in turn, it has shown that using quantitative data streams for mining improves 

the quality of the mined patterns and the accuracy of the detection models. 

Bou-Harb et al. [20] proposed the use of big data analysis using graph theory to identify the 

meeting point of botnets for subsequent mitigation. Their approach took advantage of unusable 

network IP addresses to identify malicious traffic on the Internet.  The  Carna  botnet  dataset  (about  

100 GB  size) was analyzed in this study.  The method involved capturing the behavior of   an infected 

bot on an Internet scale to analyze its vulnerabilities. The statistical downward fluctuation analysis was 

used to distinguish between probing activities and traffic from dark net data. A second sample was 

made by analyzing the malicious behavior of malware specimens in a virtual environment and a spread 

tree model was used to isolate the bot niches. The Erdos-Renyi method was used to generate random 

graphs to determine the correlation between the malicious traffic and the probing traffic analyzed in 

the second sample. This correlation was based on entropy measurements and statistical tests to 

corroborate that the probing traffic was fact originated from the analyzed malware samples. Using 

both methods, all the nodes with a bot-edge probability, that is, similar in behavior, were removed 

successfully. Furthermore, it has been noticed that the latter nodes interacted more with the BotMaster 

and, consequently, caused a greater propagation of the botnet. The authors demonstrated as a general 

conclusion that the studied model provides a cost-effective network security solution to deal with 

botnet detection. 

On the other hand, Sahu et al. [21] proposed a hybrid technique based on directed acyclic networks 

and Support Vector Machines (SVM) for malware detection. To carry out the experimentation, the KDD 

Cup 1999 dataset was analyzed.  The process started performing data reduction to obtain a subset  of 

unrelated characteristics modeling directed acyclic graphs (DAG). That is, validating that the set of 

characteristics exists in the DAG space. The SVM classifier was based on the Euclidean distance 

between the weights of its nodes and the values of the input vector. The experiment considered the 

types of attacks labeled in the KDD Cup 1999 dataset being them Normal, DoS (Denial of Service), 

Probing, U2R (User to Root) and R2L (Remote to User) attacks. At the end of the tests, the model 

performed correctly for the proposed task, showing higher precision and accuracy metrics with the 

two classification methods (ISMCS and CIDMS), having a 84% detection rate in the presence of 

normal traffic, 81% for DoS, 82% for Probing attacks, 85% for U2R attacks and 83% in the case of R2L 

attacks. Thereby, the proposed method has proven high accuracy and precision when detecting 

malware attacks. 

2.2. Machine Learning Techniques 

Wei et al. [22] proposed Androiddetect, a mobile application to detect malicious malware 

specimens under a supervised learning model. Naive Bayes and J48 decision tree algorithms were 

used for modeling the classifier, enabling them to analyze the behavior of malware and then categorize 

the samples as malicious and benign applications. A total of 219 malicious samples were analyzed, 

where 102 applications are read applications and the 117 applications are of unknown types as they 

were labeled in the virus database. At the experimentation stage, malicious applications to leak private 

information by sending text messages were installed. Then, the behavior of those specimens was 

analyzed in the search of patterns (i.e., system calls) that led to characterize the malware. At the testing 

phase, the analysis was performed considering 200 read applications (100 benign and 100 malicious 

applications) and 180 types of hybrid applications (90 benign and 90 malicious applications) and the 

authors demonstrated that Androiddetect performed effectively, reaching average accuracy (ACC) 

rates of 82.5% and 86% for Naive Bayes and J48 algorithms, respectively, and so it managed to reduce 

the average false positive rate (FPR) as well. Androiddetect, however, obtained a relatively low 

percentage in the TPR category but this issue was compensated with better results in detecting 

malware attacks, both in terms of ACC and TPR. 
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Gadelrab et al. [23] proposed a botnet detection model named BotCap based on machine learning 

techniques.  Their research aims to address two major tasks—the in-depth analysis of network  traffic 

packets and the gathering of information from infected hosts in the network. The collected dataset 

included two groups of botnets differentiated by their operation mode. The first group with Aryan, 

Ngr and Rxbot as botnets that communicate through an IRC channel; and the second group having 

Black Energy, Zeus and Vertexnet as botnets performing HTTP communications with the server. The 

dataset collects both benign and malicious traffic samples. J48 decision tree and Support Vector 

Machine (SVM) algorithms were trained to distinguish network traffic as benign and botnet. From the 

55 features included in the dataset, a subset of 9 were selected as the most relevant for the analysis. 

Then, both algorithms were validated by computing the accuracy, recall and F1 measurement. In order 

to optimize the models, the Grid search algorithm was applied before performing a 5-fold cross-

validation analysis. Their results showed that the proposed approach is capable of detecting 

individually infected hosts on a local network without the need to collect much information from the 

infected computers. 

Yerima and Sezer [24] developed the DroidFusion framework to train a set of machine learning 

algorithms aimed at developing strong supervised models to detect malware attacks. To this end, four 

different datasets containing features extracted from two publicly available malware samples were 

analyzed. In the first dataset, taken from the Malgenome-215 project, cross-validation was used to 

extract the test data and build the DroidFusion model. The framework first evaluates the test data 

according to the following classification algorithms—J48 decision tree, Forest REP, Random Forest-100, 

Random Forest-9 and Perceptron. In relation to the first dataset, it was possible to demonstrate that 

the DroidFusion classification was more accurate than the base classifiers for both the malicious and 

benign samples with a weighted F1-score above 0.98. Regarding the second dataset,  Drebin-215,  the 

combination of supervised algorithms performed more accurately than the base classification 

algorithms with a F1-measurement of 0.9872, scoring slightly better than Malgenome-215. McAfee-350 

was the third dataset to be analyzed with similar F-1 scoring results of 0.9788, closely followed in this 

case by J48 and Random Forest-100 particularly in precision when detecting malware and benign 

classes. Finally, testing the McAfee-100 dataset the results clearly outperformed the group of ensemble 

algorithms trained for this experiment, measuring a F-1 score of 0.9777. In the light of the evaluation 

results, it was demonstrated that DroidFusion’s combination of supervised models and calibration 

strategy improved the resultant accuracy and precision to detect several malware specimens. 

Zhou and Pezaros [25] proposed a methodology targeting the detection of Zero-Day intrusions, 

but also addressing high accuracy levels for well-known malware attacks. Their proposed methodology 

is based on the analysis of behavioral metrics extracted from the CICFlowMeter-V3 tool with six 

machine learning algorithms. The CIC-AWS-2018 dataset was used to conduct training and validation 

of the supervised models. This dataset contains seven types of scenarios, among them botnet attacks, 

that have been trained with six machine learning algorithms—Random Forest, Naive Bayes, Decision 

Tree, Neural Networks (MLP), Discriminant Analysis and K-Neighbors. On the other hand, eight novel 

types of intrusions were included in the test dataset and therefore the capability of detecting zero-day 

intrusions is carried out. The performance of the trained models was cross-validated in terms of 

accuracy, recall, F1-score and overhead time. The overall results showed that most of the classifiers 

obtained high accuracy and F1 scores detecting the majority of network threats. In case of botnet 

detection, the F1 score of the classifiers showed an outstanding performance of about 1.0, with the 

exception of the Naive Bayes algorithm which presented the lowest performance reaching a 0.68 score. 

It was also shown that the Decision Tree model presented a lower overhead time in contrast to the rest 

of classifiers. It is to note that the Decision Tree model seems suitable for working with statistical data 

collected from the CICFlowMeter tool, hence prompting as a proper method to detect botnet patterns. 

Alenazi et al. [26] proposed a novel detection framework designed for detecting HTTP botnet 

attacks. Three models are designed with this objective in mind. Firstly, the Domain Mass Detector 

analyzes features of DNS queries, such as the total number of queries or the number of geo locations 
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of resolved IP addresses, associated with malicious fast flux DNS servers to recognize botnet patterns. 

Secondly, the Application Detector profiles host applications by scrutinizing DNS traffic requests 

originated by legitimate applications to be compared with suspicious profiles based on domain features 

such as the FQDN length, query type, among others. In addition, the Time Series Detector examines 

possible timing behavioral patterns of HTTP bots where scheduled communications between the C&C 

server and the bot have been found by analyzing inter-queries intervals. Based on this criterion, the 

three models carried out the detection of HTTP botnets by comparing three classifiers—Gaussian 

Naive Bayes, Random Forest and Decision Tree. The ISOT HTTP Botnet Dataset was used for validation, 

which in turn contains following HTTP botnet specimens—Blackout, Zeus, Blue, Black Energy, Zyklon, 

Citadel, Liphyra and Betabot. The obtained results confirmed that the Naive Bayes Gaussian model has 

a low performance compared to the Random Forest and Decision Tree models. On average, the Random 

Forest model scored above 99%, except for the Application Detector with 94.8%. The same pattern was 

observed for Decision Tree, whose accuracy was higher than 99%, but 95.5% when computed for the 

Application Detector. 

Gonzalez-Cuautle et al. [16] proposed the Synthetic Minority Oversampling Technique (SMOTE) 

to address the difficulties to perform botnet classification in highly unbalanced datasets. The method 

was intended to improve the classification process  with  synthetically-generated  balanced  data, 

and optimally calibrating the parameters of the different ML algorithms in order to avoid overfitting. 

In this research work the authors analyzed two datasets—ISCX-Bot-2014, provided by the Canadian 

Institute for Cybersecurity with 16 different types of botnets reported; and the CIDDS-001-Coburg 

Intrusion Detection dataset, provided by the German University of Coburgin with multiple intrusion 

attacks such as port scanning, brute force and DoS; as well as benign observations are reported. The fact 

that significantly more benign samples than malicious ones are present, is a distinctive handicap for 

both datasets. To solve this unbalancing issue, the SMOTE oversampling technique was  used and, 

as a result, the resultant minority and majority classes remain properly balanced for training five 

classifiers—K-nearest Neighborhoods, Support Vector Machine, Logistic Regression, Decision Tree and 

Random Forest. The extraction and selection of the most relevant characteristics was performed by the 

Principal Component Analysis (PCA) algorithm and then the Grid Search algorithm estimated the 

optimal hyperparameters for each classification model. Finally they evaluate the classification models 

using the precision, recall and F1-score metrics. The results demonstrated SMOTE + GS capability to 

improve the prediction of malicious samples with highly unbalanced data sets in terms of accuracy, 

with measurements ranging from 97.35% and 98.72% for the SVM and KNN classifiers, respectively). 

A multi-layered framework for botnet detection is proposed by Khan et al. [27],  where it 
is addressed the detection of P2P botnets. This research performs an in-depth analysis of traffic 

patterns inherent to P2P botnets on which machine learning classifiers can lead to categorize the 

malicious and normal observations. The framework encompasses four analytical layers. The first layer 

filters out non-P2P traffic to reduce processing overhead. For this reason, TCP control packets are 

selected to perform the identification without affecting the precision rate. In the second layer,  P2P 

and non-P2P traffic is characterized by combining port filtering, DNS queries and a fast heuristic P2P 

identification method. Then, in the third layer, feature reduction helps in diminishing the chances of 

overfitting the classification model. In addition, feature extraction seeks for those features whose 

impact is more significant in the identification of the malicious traffic. Finally, in the fourth layer, a 

binary classifier categorizes P2P traffic as normal or botnet. In the experimental validation, the 

Decision Tree algorithm performed with a detection rate of 98.7% once applied upon the CTU and ISOT 

datasets, which outperformed other proposals based on Logistic Regression, Artificial Neural 

Networks and KNN. 

2.3. Deep Learning Methods 

Cakir and Dogdu [28] proposed a novel method of malware representation to extract the 

characteristics based on deep learning (word2vec). The Gradient Boosting Machine algorithm was 
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used to classify the malware and the k-fold cross validation method was used to reduce the bias.    Its 

goal was to achieve an accuracy rate for malware, which scored between 94% and 96%. A malware 

specimen dataset released by Microsoft in the year 2015 was analyzed which only considered families 

that contained the largest number of malware samples such as Ramnit, Lollipop, Kelihos_ver3, Vundo, 

Tracur, Kelihos_ver1, Obfuscator.ACY and Gatak. The samples were divided into 4 datasets to be tested 

independently with 5-fold cross validation. Two variables were considered for evaluation—accuracy 

function and log loss, none of them exceeding a 6% error rate. The results showed that the higher the 

malware sample size the better the accuracy rate for detecting attacks in the analyzed datasets. 

The work presented by Tran et. al. [29] explored the application of a Long Short-Term Memory 

network (LSTM) for combating bots with Domain Generation Algorithms (DGA) for randomly creating 

a large number of domains from where a subset is actually used to communicate with the C&C server. 

The authors propose the LSTMI.MI algorithm, a novel cost-sensitive learning approach to address the 

class-imbalanced problem. Initially, all the abnormal domains are labeled as a single DGA class to 

conduct a binary classification given a domain name. Once categorized as automatically generated, 

the algorithm performs a second multi-class analysis to properly label the domain within the possible 

malicious categories. Botnet characterization is possible by extracting domain name features difficult to 

evade by adversaries. An extensive experimentation was performed on a dataset set fed by non-DGA 

(Alexa) and 37 DGA classes. As the dataset exhibits different imbalance degrees, the LSTMI.MI proven 

higher accuracy degrees than similar approaches. The F1-score for two-class cost-sensitive was 0.9849 

for non-DGA and 0.9845 for DGA. In the multi-class scenario, an average F1-score of 0.8751 evidenced 

an acceptable accuracy degree, hence validating the adequateness of this supervised method in the 

area of botnet detection. 

2.4. Data-Driven Intrusion Detection Approaches 

Intrusion Detection Systems (IDS) are pivotal defensive elements to address the detection of 

diverse cyber-threats in current network deployments. They are mainly categorized in the research 

literature are signature-based and anomaly-based systems. Signature-based IDS requires specific 

patterns of malicious samples to perform detection, which raises an issue against never seen threats. 

On the other hand, anomaly-based IDS profile the behaviour of network traffic in order to detect 

deviations when no traffic categorization can be performed [30]. Different anomaly-based IDS 

deployments leverage data-driven learning approaches in order to detect botnets accurately, both when 

dealing with existing specimens and with new variants as well. However, and despite they entail 

widely adopted solutions, they are expected to adapt for facing the emerging challenges concerning 

explainability and strengthening against adversarial evasion tactics [31]. Thereby, the following related 

research works pave the way towards data-driven strategies on intrusion detection. 

Wahab et al. [32], a dual solution to optimally distribute DDoS attack detection loads among 

virtual machines under a limited amount of cloud resources was proposed. The first approach allows 

the hypervisor to monitor the VMs activities to identify any malicious patterns and collecting 

suggestions from other hypervisors that had similar interactions. Monitoring and suggestions-based 

data were incorporated using Bayesian inference to estimate confidence scores. In addition, a 

resource-based confidence score simulating a play-role game between the hypervisor and the attacker 

was designed. It is intended to mislead the attackers who infer that some VMs are not being rigorously 

monitored. The results of this research showed that the dual modeling raised the detection accuracy 

of DDoS attacks in about 26%.   In the research conducted by Abdel Wahab  et al. [33] proposed        a 

repeated game of Bayesian Stackelberg as a mechanism to detect and defend resources against 

simultaneous attacks of different types for cloud-based systems. His research aimed at developing  a 

cloud system that can detect multiple types of attacks. The analysis of a Data-Driven Security (DDS) 

dataset contained logs of data from AWS honeypots. Once the data from the honeypots was collected 

a one-class SVM detector identifies abnormal activities, making it useful even with no previously 

registered attacks. The proposed solution outperforms the other strategies in detection 
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performance by more than 7%. By having an optimal detection load distribution among VMs, its 

scalability increases compared to Collabra, which needed to analyze and monitor all the instantiated 

VMs. In a similar manner, Sotelo et al. [34,35] proposed a clustered-based analysis to detect 

anomalous scaling processes carried out in virtualized environments, laying the foundations for 

profiling workload-based and instantiation-based Economic Denial of Sustainability (EDoS) attacks, 

targeted against cloud deployments. 

Li et al. [36] proposed a data-based mimetic intrusion detection game model called GLIDE       as 

a defense against intrusion attacks for edge computing networks, combining a strategy of multi-

redundancy voting algorithms to optimize their intrusion detection rate at edge computing network 

terminals and game theory. The model was designed to establish a measure to detect and eliminate 

intrusion attacks in complex environments for edge computing networks because they are 

characterized by having ambiguous interconnections. A comparison of their proposal with Fog-IDS 

and EIDS models was performed, showing that GLIDE obtained a higher performance in detecting 

malicious traffic with a hit rate higher than 80%.  On the other hand, Ieracitano et al. [14] proposed  a 

statistical analysis and an intelligent intrusion detection system (IDS) driven by autoencoders (AE), 

which was able to recognize malicious threats and ensure greater security in any public access system. 

The NSL-KDD data set was analyzed for experimental validation. The IDS detected multiple attack 

types such as DoS, R2L and Probe. The results showed that the AE50 classifier outperformed other 

methods with 84.21% precision in binary classification and 87% precision in multi-classification. 

2.5. Research Gaps on Comparative Assessment 

The  four  approaches  reviewed  in  this  research  have  exhibited  a  variety  of  applications  of 

supervised learning to conduct botnet detection even when their modus operandi differ substantially. In 

particular, machine learning  methods  such  as  Decision  Trees,  have  embraced  a  wide  range of 

detection scenarios where their effectiveness has been demonstrated. However, it is to bear in mind 

the comparison challenges [18] stated in Section 1 emerge when dealing with unbalanced data 

samples, weak feature extraction and/or selection procedures, scarce description of the supervised 

models parameterization, or a combination of those factors, pose major limitations to develop accurate 

botnet detection models. Thereby, the main purpose of our research lies in filling such methodological 

gap for comparative purposes and so conducting a fine-grained evaluation scheme by instantiating a 

subset of the most effective ML techniques for a thorough measurement of accuracy metrics when 

detecting botnets. 

3. Methodology 

This section describes the research methodology, the description of datasets, flow metric 

measurements, feature selection and machine learning model construction. 

3.1. Processing Stages 

The analysis of traffic-flow patterns targeted on observing, understanding and characterizing the 

behavior of botnets at the network level is the object of study in this research. To illustrate the 

communication scheme and the performed analysis of such network traffic-flow patterns, Figure 1 

depicts the client-server architecture where botnet traffic is exchanged from the compromised machine 

(bot) to the Command and Control (C&C) server. It is to note that regardless of the number of machine 

learning methods considered in this proposal, they can be easily extended to further algorithms as 

our methodology remains generic. Grounded on the botnet analysis conducted on similar proposals 

[22–24], and to address the proper characterization of this variant of malware,   five processing stages 

have been defined—collecting network traffic samples (benign and malicious), flow metrics 

measurement, implementation of machine learning models, training, validation and prediction 

assessment. They are explained in the following subsections. 
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Figure 1. Communication scheme for metrics selection and model comparison. 

3.1.1. Collecting Network Traffic Samples 

At this stage, traffic samples are obtained from different botnet specimens captured on the 

network, as well as normal traffic observations. These samples are commonly gathered with traffic 

monitoring tools (e.g., Wireshark, Tcpdump), and the captured network packets are exported using 

standardized formats such as PCAP. Similarly, malware datasets of raw network traffic are represented; 

or in some cases aggregated metrics are already processed from the captured samples either at the 

packet or flow level. This stage of the methodology opens the possibility for deploying monitoring 

tools to obtain traffic captures in a controlled environment or collect them from available datasets. For 

experimental purposes, the latter consideration has been assumed in this research since our goal is to 

strengthen the comparison. 

3.1.2. Flow Metrics Measurement 

Given a collection of network packets, relevant traffic-flow metrics are measured to analyze 

common traffic patterns that characterize the behavior of different botnet specimens. Network flow 

metrics typically represent quantitative relationships such as—the number of packets transmitted 

from the source IP address 192.168.50.31 to the destination 192.168.50.88 in the forward direction is 3, 

with one packet going backward. Flow-level metrics have been extensively used to model data-driven 

detection models to tackle with various network threats, having defensive solutions against DDoS as 

one of the most recurrent applications in the literature [37]. 

3.1.3. Model Implementation 

In this phase the detection model is built with the selected classifiers. As a result of the literature 

review, some of the most prevalent methods for botnet detection have been chosen—Decision Tree, 

Random Forest, Naive Bayes, K-Nearest Neighbors and Support Vector Machines (SVM). 
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3.1.4. Training 

At this stage, the models are trained using a subset of the dataset. The training approaches and 

the tuning processes applied for each machine learning method are detailed later in this section. 

3.1.5. Validation 

The results of each detection model are evaluated following a three-step process—(1) setting the 

training results as a baseline, (2) performing a cross-validation analysis on the training data set for 

each botnet family, and (3) assessing the botnet prediction accuracy using the test data set. 

3.1.6. Global Assessment 

Based on the detection capabilities previously acquitted, an in-depth analysis is carried out, 

putting into perspective the adequacy of the detection methods for each botnet type. 

3.2. Datasets of Botnet Traffic 

In order to conduct the experimental validation of this proposal, two publicly available datasets 

have been used in this research: 

3.2.1. Cse-Cic-Ids2018 Dataset 

This dataset is the result of a collaborative project between the Communications Security 

Establishment (CSE) and the Canadian Institute for Cybersecurity (CIC) [38]. This dataset collects 

daily traffic samples composed by benign and intrusion data captured in a virtualized environment. 

The dataset includes raw network packets (in .pcap format) and Windows/Ubuntu log files monitored 

on each client node. In addition,  the dataset provides 80 network flow-traffic features extracted  with 

CICFlowMeter-V3 (in .csv format) on a per-machine basis, thus providing flow-based statistical 

information. The different attacks simulated in the same dataset were—brute force, Botnet, DoS, DDoS, 

web attacks and infiltration of the network from inside. For each type of attack, network topology has 

been deployed in a private AWS cloud intrusion [39–41]. As this research is focused on the study of 

botnet attacks, we have analyzed traffic samples from two different botnet families—Zeus and Ares. 

3.2.2. Isot Http Botnet Dataset 

This  dataset  is  the  result  of  a  research  work  of  Alenazi  et  al.  [26]  and  differentiates   two 

broader categories. The first, provides a botnet  dataset  generated  by  capturing  malicious DNS 

traffic only, whereas the second includes benign traffic obtained after capturing legitimate  DNS traffic 

generated by different software applications such as antivirus, online chat and instant messaging 

applications (e.g.,  Skype,  Facebook,  Messenger),  among  others.  This  information  was collected to 

develop a virtual  environment  used  to  implement  different  kits  of  exploits  both for HTTP botnets 

and legitimate software applications. There, nine command and control (C&C) servers were 

implemented,  one for each botnet type. Domain names were configured for   the C&C servers with 

the purpose of  monitoring  the  behavior  of  outgoing  DNS  queries  from the client nodes. For 

instance, the Citadel botnet C&C server domain name was registered as citadel.botnet.isot. The 

IP/name distribution of bots within the virtual environment was—192.168.50.14 for zyklon.botnet.isot, 

192.168.50.15 for blue.botnet.isot, 192.168.50.16 for liphyra.botnet.isot, 192.168.50.17 for 

betabot.botnet.isot, 192.168.50. 18 for blackout.botnet.isot, 192.168.50.30 for citadel.botnet.isot, 

192.168.50.31 for citadel.botnet.isot, 192.168.50.32 for be.botnet.isot (Black energy) and 192.168.50.34 

for zeus.botnet.isot [42]. 

3.3. Flow-Metrics Measurement 

The CIC-AWS-2018 flow features are already represented in csv format, so no additional data 

transformation was required. However, as the ISOT HTTP Botnet Dataset is composed of five pcaps 
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files, they were processed through the CICFlowMeter tool. This application allowed the generation of 

csv files with 84 flow-based metrics. For each report, the different types of exploits were labeled using 

the Wireshark tool and only those records referred to botnets were preserved. Upon the five obtained 

reports, it was decided to work with the fourth one as it contained samples of the 8 botnets families in 

a time frame elapsing from 1 June to 3 June 2017. 

3.4. Feature Selection 

The following considerations have been assumed for feature selection. 
 

3.4.1. Behavioral and Contextual Features 

From the total number of flow-based attributes obtained in the previous step, two groups of 

features were selected in accordance with previous research. The first group of eight characteristics 

was chosen following the methodology introduced by Sharafaldin et al. [41], where a  Random Forest 

Regressor was used to obtain the behavioral metrics (Subflow_Fwd_Byts, Subflow_Bwd_Byts, 

TotLen_Fwd_Pkts, TotLen_Bwd_Pkts, Fwd_Pkt_Len_Mean, Bwd_Pkt_Len_Mean, Fwd_Pkts/s and 

Bwd_Pkts/s) described in Table 1. The second group of nine features was added based on the 

methodology presented by Gonzalez-Cuautle et al. [16], where the ISOT HTTP Botnet Dataset was 

used ( Src_Port, Dst_Port, Flow_Duration, Flow_Byts/s, Flow_Pkts/s, Tot_Fwd_Pkts, Tot_Bwd_ Pkts, 

Subflow_Bwd_Pkts and Subflow_Fwd_Pkts). 2 features were selected using the ‘feature_importances’ 

criterion to improve the precision of the Random Forest algorithm—Fwd Pkt Len Max and Fwd Pkt 

Len Min. Finally, 2 features were added to own criteria to provide more information—“Protocol” and 

“Label”. Consequently, the CIC-AWS-2018 dataset has 19 input variables and one output variable; 

whereas the ISOT HTTP Botnet dataset has 20 input variables and one output variable. This is because 

the “Src_Port” attribute was not found the CIC-AWS-2018 dataset. The name of the variable “Label” 

has been changed to “Output”. These features are described in Table 1. 

 
Table 1. Classification features used in CIC-AWS-2018 dataset and ISOT HTTP Botnet Dataset. 

 

Type Feature Name Description 
 

Label (Output) The class that is assigned to the different malware samples. 

Descriptive metrics 

 
 
 
 
 
 
 

 
Behavioural metrics 

Src_Port Source port number 
Dst Port Destination port number 
Protocol Transport protocol 

Flow_Duration Flow duration in microseconds 
Tot_Fwd_Pkts Total number of packets transmitting in forward direction 
Tot_Bwd_Pkts Total number of packets transmitting in backward direction 
TotLen_Bwd_Pkts Total size of packets transmitting in forward direction. 
TotLen_Fwd_Pkts Total size of packets transmitting in backward direction. 
Fwd Pkt Len Max Maximum packet size in the forward direction 
Fwd Pkt Len Min Mínimum packet size in the forward direction 
Fwd_Pkt_Len_Mean Average size of packet transmitting in forward direction. 
Bwd_Pkt_Len_Mean Average size of packet transmitting in backward direction. 
Flow_Byts/s Number of bytes per second. 
Flow_Pkts/s Number of flow packets per second 
Fwd_Pkts/s Flow packet rate transferred in forward direction per second 
Bwd_Pkts/s Flow packet rate transferred in backward direction per second 
Subflow_Fwd_Byts Average number of bytes in a subflow in forward direction. 
Subflow_Bwd_Byts Average number of bytes in a subflow in backward direction. 
Subflow_Bwd_Pkts Average number of packets in a subflow in forward direction. 
Subflow_Fwd_Pkts Average number of packets in a subflow in backward direction. 

 
 

 

3.4.2. Exploratory Data Analysis 

To get a general idea of the CIC-AWS-2018 distribution, a bar chart was plotted for each feature 

in contrast to the class attribute as shown in Figure 2. It can be noticed a concentration of botnet 
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samples with 27.27% for the TCP (Transmission Control Protocol) protocol. The destination ports 

associated with this protocol are 8080 and ephemeral ports, a range of TCP ports that require a number 

of auxiliary ports to communicate with other machines [43]. Because the number of benign samples is 

highly concentrated on TCP traffic, the entire dataset was filtered by TCP. Hence, the portion of botnet 

samples has risen to 34.35%. 

 

Internet Protocol (0) TCP (6) UDP (17) 

 
 
 
 
 
 
 
 
 

65.65% 

 
 
 
 
 
 

Figure 2. Distribution of benign and malicious traffic samples in the CIC-AWS-2018 dataset. 
 

When the ISOT HTTP Botnet dataset was analyzed, it was found that the majority of flows were 

transmitted using the UDP protocol (17). Additionally, a comparative analysis between botnet types 

was carried out to find out the concentration of them across the dataset. The result of this analysis is 

shown in Figure 3, where it can be seen that the Citadel botnet represents the highest percentage of 

samples (41.16%) and the Zyklon botnet presents the lowest proportion (0.24%) of the dataset. 
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Figure 3. Distribution of botnet traffic samples grouped by class in the ISOT HTTP Botnet dataset. 
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3.5. Machine Learning Models Construction 

The main goal is to identify whether the information received in the flow belongs to benign     or 

malicious traffic. This being the main target  of  supervised  classification,  the  objective  is  to find the 

best classification model that fits both datasets. Since the proposal introduced a novel reference model 

for traffic-flow based botnet detection, they are expected to serve as preliminarily benchmarking 

elements for further applications, thus needing to fulfill the following requirements—(1) they must be 

early-adopted solutions; (2) their pros/cons shall be well understood by the research community; and 

(3) there is a large variety of adaptations/modifications in the state-of-the-art solutions; and (4) to 

outperform them is viable, so they motivate their comparison against novel proposals. To this end, 

exhaustive tests are carried out with the most prevalent machine learning classification models for 

botnet detection documented in the research literature, as it is supported by Alenazi et al. [26], 

Gonzalez-Cuautle et al. [16] and Zhou & Pezaros [25]. Those classifiers are—Decision Tree, Naive Bayes, 

Random Forest,  K-Nearest Neighbors and Support Vector  Machine (SVM). It is to bear in mind that 

such selection fits also with the data-driven IDS based on anomaly detection as pointed by Apruzzese 

et al. [17] in a deep analysis of the family of algorithms best suited for botnet detection. For all cases, 

the datasets are splitted as 80% for training the model and 20% for testing. Some considerations have 

been assumed for each classifier, as explained in the following subsections: 

3.5.1. Decision Tree Implementation 

The maximum number of characteristics depends on the number of input variables in the dataset. 

The minimum amount of sample size required to divide the internal node equals 2 and to be in the leaf 

node equals 1. To define the maximum tree depth level, a fit chart was used for both datasets. For the 

ISOT HTTP Botnet dataset the model was created with a depth level of 51, and for the CIC-AWS-2018 

dataset it was observed that a high accuracy rate was obtained with a depth level of 14. 

3.5.2. Gaussian Naive Bayes Implementation 

Given the simplicity of this method, the parameter that interprets the variance of all features was 

set to 1 × 10−10. 

3.5.3. Random Forest Implementation 

In this model, the number of trees built from 12 and the maximum number of features depends 

on the number of input variables in the dataset. The minimum number of the samples required to 

split is 2, and the minimum number of the samples to be at leaf node is 1. Upon this parameterization, 

the maximum tree depth is defined using a fit chart for both datasets. For the ISOT HTTP Botnet 

Dataset the model is built with a depth level of 35 and for the CIC-AWS 2018 dataset it is observed that 

with a depth level of 22 a high accuracy rate is obtained. 

3.5.4. K-Nearest Neighbors Implementation 

For the implementation of this algorithm,  it was decided to use the Euclidean distance and  the 

leaf size is kept as 30 by default. To find the nearest K neighbor, Gonzalez-Cuautle et al. [16] in their 

research implemented a Grid Search algorithm for defining one of their parameters resulting of this 

way three algorithms, which are Ball tree, KD tree and Brute Force. Taking into consideration these 

three algorithms, it was observed that the only algorithm that correctly predicted all classes was KD 

tree with a value of n_neigbors = 1 for the ISOT HTTP Botnet Dataset and with a value of n_neighbors 

= 2 for the CIC-AWS-2018 dataset. 

3.5.5. Support Vector Machine Implementation 

The OneVsRestClassifier Multiclass was used to predict several classes. LinearSVC was used for 

the construction of the model because it better suits large datasets [44]. It was decided not to use dual 
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optimization since the number of samples exceeds the number of features contained in both datasets. 

The parameters that define the tolerance (tol) and the adjustment parameter (C) were obtained by 

heuristics, so the tolerance was defined with 1 × 10−10 and C equal to 175. The maximum number of 

iterations is 12,000. 

3.5.6. Grid Search Implementation 

Using the features already defined in Table 1, the implementation of each of the models was 

explained in the previous subsection and is also visually defined in Appendix A, which shows the list 

of parameters used in each of the models. In this appendix, the CIC-AWS-2018 dataset was filtered by 

the TCP protocol and the ISOT HTTP Botnet Dataset was divided into minority and majority classes 

to balance both datasets. After dividing the ISOT HTTP Botnet Dataset into majority and minority 

classes, the parameter which estimates the weights of the classes for the unbalanced data sets called 

“class_weight” was modified in the Random Forest, Decision Tree and SVM models configuration as 

“balanced” because it allowed to replicate the smaller class until it had as many samples as the larger 

one, but implicitly. 

In order to improve the performance of each of the models, the Grid Search algorithm was used. 

For this purpose, a range of possible values was defined for each parameter in the different ML models, 

which are indicated in Appendix B. The result of this configuration is shown in Table 2, where the best 

hyperparameters per machine learning model are detailed. 

3.6. Execution Environment 

The experimental validation was developed in Jupyter with Python 3.3.2. The Scipy, Scikit-learn 

[44] and Pandas machine libraries were  used  to  implement  the  detection  models.  The experiments 

were run in a Windows 10 host with 8GB RAM and a 2.8 GHz Core i7 processor. The 

DecisionTreeClassifier method was used in the implementation of decision trees and the 

RandomForestClassifier method was used for ensemble models. Likewise, the Gaussian method was 

used for the Naive Bayes model whereas the LinearSupportVectorClassifier method was used for 

implementing the SVM model. Finally, the KNeighborsClassifier method was used in the case of 

Nearest Neighbor models. 
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Table 2. ML models + GS-based hyperparameters (λ). 
 

ML Models λ CIC-AWS-2018 (TCP)
   ISOT HTTP Dataset  

Original  Minority Class Majority Class 

 
 
 
 
 
 
 
 

 
12,000 12,000 12,000 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Algorithm used to compute nearest neighbors 

KNN 
Number of neighbors to use 

KD tree 
2 

Brute 
1 

KD tree 
1 

Ball Tree 
1 

Leaf size 30 30 30 30 

Weight function used in prediction Uniform Uniform Uniform Uniform 

Regularization parameter C 10 10 10 10 
Estimated class weights for unbalanced datasets   Balanced Balanced 
Penalty l2 l2 l2 l2 

SVM 
multi-class strategy One-vs-rest One-vs-rest One-vs-rest One-vs-rest 
Select the algorithm to either solve the dual or primal optimization problem False False False False 

Tolerance for stopping criteria 
Maximum number of iterations to be run 
Kernel type to be used in algorithm 

1 × 10−20 

Linear 

1 × 10−20 

Linear 

1 × 10−20 

Linear 

1 × 10−20 

12,000 
Linear 

Maximum tree depth 
Estimated class weights for unbalanced datasets 
Number of features for best split 

20 
 

19 

35 
 

20 

20 
Balanced 
20 

35 
Balanced 
20 

DT Function to measure split quality GINI GINI GINI GINI 
Strategy used to choose split at each node Best Best Best Best 
Min. Number of samples required to be at leaf node 2 10 1 20 

Min. Number of samples required to split 10 10 2 10 

Use bootstrap samples when building trees True True True True 
Estimated class weights for unbalanced datasets   Balanced Balanced 
Function to measure split quality GINI GINI GINI GINI 

RF 
Maximum tree depth 22 10 35 35 

 Number of features for best split 19 20 20 20 
 Min. Number of samples required to be at leaf node 10 2 1 1 
 Min. Number of samples required to split 10 2 2 10 
 Number of trees in forest 12 25 12 12 

NGB Smoothing variable 1 × 10−20 1 × 10−10 1 × 10−20 1 × 10−20 

 



Sensors 2020, 20, 4501 16 of 31 
 

4. Results 

This section provides a detailed explanation of the experimental results obtained in this research. 
 

4.1. Cic-Aws-2018 Dataset 

The CIC-AWS-2018 test dataset was evaluated with the following supervised learning 

classifiers—Random Forest, Decision Tree, Naive Bayes Gaussian, Support Vector Machine (SVM) and 

K-nearest neighbours. After analyzing the original CIC-AWS-2018 dataset, it was found that the 

Random Forest model turned out to be the most appropriate to correctly predict a botnet with 99.998% 

of precision over the rest of the models with a slight difference, with the exception of the Naive Bayes 

model (43.831% of precision). However, in spite of the average accuracy exceeding 94%, the results are 

biased, so it was necessary to balance the data. For this reason, the CIC-AWS-2018 dataset was filtered 

by TCP, being the predominant transport protocol as it is shown in Figure 2, where most botnets are 

grouped. Tables 3 and 4 show the higher precision obtained by filtering the CIC-AWS-2018. It is to 

note that the detection accuracy broadly increases after implementing the Grid Search algorithm in 

each of the evaluated models. Based on these results, it is seen that Naïve Bayes obtains the lowest 

performance compared to other classifiers. 

 
Table 3. Comparative analysis of ML models on the CIC-AWS-2018 dataset filtered by Transmission 

Control Protocol (TCP) (A). 

 

Metric 

 

Type 

 
Random 
Forest 

Random 
Forest + 

 
Decision 
Tree 

 
Decision 
Tree + GS 

 
K-nearest 
Neighbors 

K-nearest 
Neighbors 

 

 
 

 
 
 

 
Table 4. Comparative analysis of ML models on the CIC-AWS-2018 dataset filtered by TCP (B). 

 
 

 
Metric Type 

 
Gaussian 
Naïve Bayes 

Gaussian 
Naïve Bayes 
+ GS 

Support 
Vector 
Machines 

Support 
Vector 
Machines 

 
 
 
 
 
 

 

4.2. Isot Http Botnet Dataset 

The results of the ISOT HTTP Botnet Dataset are shown in Tables 5 and 6. There, the precision 

results of the ML models, before and after implementing the Grid Search algorithm, are detailed. It is 

observed that the GS-based models increase their accuracy, precision and recall rate. This case was 

observed when all models increased a precision rate of 100%, except for KNN which performed over 

93%, to detect the Blackout botnet. Only the Random Forest and Decision Tree models were able to 

detect a high percentage of precision but a low percentage of recall to the Liphyra botnet. Compared 

with Decision Tree and Random Forest models, KNN reduced its precision rate for the majority of the 

botnets, as is the case of Liphyra.  The Naive Bayes obtained a low percentage of precision but   a high 

recall rate when analyzing Liphyra.  In the case of the Citadel botnet,  it was observed that  all 

algorithms correctly detected this specimen in a virtual machine with an IP 192.168.50.31 but its 

 (SVM) (SVM) + GS 

Precision 
Benign

 99.962% 99.025% 99.940% 99.943% 

Bot (Zeus and Ares) 77.855% 79.780% 86.972% 86.904% 

Recall 
Benign 85.197% 87.019% 92.143% 92.186% 

Bot (Zeus and Ares) 99.939% 98.355% 99.895% 99.898% 

Accuracy 90.245% 90.901% 94.812% 94.821% 

 

 GS    + GS 

Precision 
Benign 99.998% 99.998% 99.998% 99.998% 99.985% 99.986% 

Bot (Zeus and Ares) 100.00% 

Recall 
Benign 100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

99.982% 

99.991% 

99.979% 

99.989% 

Bot (Zeus and Ares) 99.996% 99.996% 99.996% 99.996% 99.972% 99.974% 

Accuracy 99.999% 99.999% 99.999% 99.999% 99.984% 99.984% 
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precision significantly lowers when evaluated in the virtual machine with IP 192.168.50.30. Based on 

these results, it is possible to remark that the detection of the Citadel botnet might be influenced by the 

virtual execution environment. 

Table 5. Comparative analysis of ML models in the ISOT HTTP Botnet dataset (A). 
 

 

 
Metric Botnet 

Random 
Forest 

Random 
Forest + 

Decision 
Tree 

Decision 
Tree + GS 

K-Nearest 
Neighbors 

K-Nearest 
Neighbors 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

As the Zyklon botnet contains fewer samples in the dataset, its analysis exhibited that Random 

Forest and  Decision  Tree  models  are  the  only  ones  capable  of  obtaining  a  high  precision  but a 

low percentage of recall. On the other hand, the Naive Bayes and SVM models obtained a low 

percentage of both precision and recall when analyzing the Zyklon and Blue specimens, thus failing 

to correctly classify those samples. Likewise, SVM were unable to classify the Liphyra botnet as well. 

Again, these results are explained due to the fact that there is a shortage of samples in of these 

specimens in the dataset as noted in Figure 3. 

Because all the evaluated models improved after implementing GS, in terms of accuracy, precision 

and recall, it was decided to divide the ISOT HTTP Botnet Dataset into minority and majority classes 

to balance the data. The results of this analysis are shown in Table 7, where it is indicated that the 

Blackout, Blue, Liphyra, Black Energy and Zyklon botnets belong to the minority class, being the rest 

part of the majority class. Naive Bayes increased its precision and recall and successfully managed 

this class but obtained a low precision and recall rate to detect the Zyklon botnet. It can also be 

observed that SVM and KNN did not reach at most 80% in precision to detect the Zyklon botnet; being 

Random Forest and Decision Tree the models that obtained a high precision in classifying this 

specimen correctly. For the Zeus botnet, the Random Forest and Decision Tree models proved to handle 

this class perfectly; and the K-Nearest Neighbors and SVM models slightly reduced their precision 

and recall rate. It is also notable that GS-based Naive Bayes obtained a high precision rate and a low 

recall rate. On the other hand, almost all models showed a low precision and a high recall rate for 

detecting the Citadel botnet. The models are detecting the class well but seem to include samples from 

other classes, which makes their detection a little more complex. However, this was not the case when 

detecting the Citadel 2 botnet, since all models computed high precision and low recall rates. The 

models have slight difficulties in recognizing and identifying this class, but despite this issue they 

performed well in general. 

  GS    + GS 

Blackout 100.000% 100.000% 100.000% 100.000% 93.019% 93.019% 
Blue 47.069% 74.235% 39.230% 74.510% 35.771% 35.696% 
Liphyra 33.993% 100.000% 18.992% 100.000% 13.729% 13.729% 

Precision 
Black Energy 96.982% 98.725% 97.135% 99.236% 91.174% 91.174% 
Zeus 82.626% 81.948% 83.255% 81.967% 74.941% 74.936% 
Zyklon 94.595% 100.000% 88.136% 97.938% 53.061% 53.061% 
Citadel 54.314% 57.923% 53.342% 58.855% 51.930% 51.980% 

Citadel2 79.709% 81.212% 79.319% 79.116% 73.756% 73.831% 

Blackout 100.000% 99.916% 100.000% 99.916% 82.857% 82.857% 
Blue 29.105% 21.524% 38.055% 21.080% 36.538% 36.501% 
Liphyra 16.694% 11.994% 18.314% 11.994% 13.128% 13.128% 

Recall 
Black Energy 96.302% 96.419% 96.341% 96.030% 86.454% 86.454% 
Zeus 90.594% 97.376% 83.553% 97.017% 77.337% 77.337% 
Zyklon 81.395% 79.845% 80.620% 73.643% 20.155% 20.155% 
Citadel 54.355% 57.114% 55.702% 49.455% 51.956% 52.033% 

Citadel2 79.832% 81.346% 78.288% 84.183% 73.248% 73.293% 

Accuracy 76.604% 79.115% 74.696% 78.893% 69.025% 69.054% 
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Table 6. Comparative analysis of ML models in the ISOT HTTP Botnet dataset (B). 

 

 

Machine Machine 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 7. Comparative analysis of minority and majority classes on the ISOT HTTP Botnet Dataset. 

 

 
DS Division Metric Botnet 

 
Random 
Forest + 
GS 

 

Decision 
Tree + GS 

 
K-Nearest 
Neighbors 
+ GS 

 
Gaussian 
Naïve 
Bayes + 
GS 

 
Support 
Vector 
Machine + 
GS 

 
 

Precision 

Blackout 100.000% 99.918% 89.426% 100.000% 100.000% 
Blue 99.963% 99.963% 91.844% 100.000% 99.925% 
Liphyra 100.000% 100.000% 80.692% 100.000% 100.000% 

 

Energy 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
4.3. Isot Http Botnet and Cic-Aws-2018 Comparison 

A comparative analysis was performed between CIC-AWS-2018 and ISOT HTTP Botnet datasets 

in terms of accuracy as shown in Table 8. Naïve Bayes had the lowest performance among the trained 

algorithms (below 50% in classification) after analyzing the ISOT HTTP Botnet. The Decision Tree 

classifier with a depth value of 10 led to the creation of the best tree with an average accuracy         of 

78.893%. Since the Random Forest model is derived from Decision Tree, it was observed that with 

setting a depth level of 20 the Random Forest model obtained the highest accuracy rate of 79.115%, thus 

Black 
99.883% 

99.883% 94.065% 95.784% 98.522% 

Minority Classes Zyklon 100.000% 98.230% 56.061% 15.152% 75.194% 

 Blackout 99.918% 99.918% 89.426% 99.836% 99.836% 
 Blue 100.000% 99.963% 95.034% 99.216% 99.216% 

Recall Liphyra 100.000% 100.000% 75.085% 99.831% 100.000% 

 Black 100.000% 99.922% 93.918% 94.776% 98.752% 
  Energy      

  Zyklon 97.368% 97.368% 32.456% 21.930% 85.088% 

 Accuracy  99.944% 99.902% 91.042% 96.554% 98.995% 

  Zeus 94.811% 94.834% 87.478% 71.367% 88.972% 
 Precision Citadel 52.542% 50.973% 53.525% 32.890% 48.898% 

  Citadel2 88.973% 93.050% 75.854% 95.242% 92.074% 

Majority Classes  Zeus 97.927% 98.268% 88.975% 49.297% 94.164% 
 Recall Citadel 79.055% 88.244% 54.173% 97.012% 96.946% 

  Citadel2 69.977% 65.007% 74.599% 45.763% 54.157% 

 Accuracy  81.044% 80.437% 75.731% 56.266% 75.413% 

 

 
Metric 

 
Botnet 

Gaussian 
Naive 

Gaussian 
Support Support 

Naive Bayes 
Vector Vector 

 Bayes + GS 
(SVM) (SVM) + GS 

Blackout 4.792% 100.000% 100.000% 100.000% 
Blue 9.030% 28.155% 0.000% 0.000% 
Liphyra 2.665% 4.048% 0.000% 0.000% 

Precision 
BlackEnergy 6.061% 100.000% 100.000% 100.000% 
Zeus 20.000% 69.687% 72.822% 72.817% 
Zyklon 0.431% 0.130% 0.000% 0.000% 
Citadel 30.620% 2.941% 51.473% 51.473% 

Citadel2 60.610% 93.803% 65.014% 65.014% 

Blackout 1.261% 99.916% 99.916% 99.916% 
Blue 33.876% 99.408% 0.000% 0.000% 
Liphyra 70.178% 99.514% 0.000% 0.000% 

Recall 
BlackEnergy 0.156% 91.787% 91.903% 91.865% 
Zeus 0.115% 49.183% 87.116% 87.116% 
Zyklon 0.775% 0.775% 0.000% 0.000% 
Citadel 7.094% 0.192% 4.708% 4.708% 

Citadel2 60.803% 44.917% 91.008% 91.008% 

Accuracy 28.812% 46.389% 70.014% 70.012% 

 



Sensors 2020, 20, 4501 19 of 31 
 

outperforming the rest of the classifiers. For the CIC-AWS-2018 dataset filtered by TCP, the Random 

Forest and Decision Tree models scored an accuracy rate of 99.999%, exceeding K-Nearest Neighbors by 

a small difference. Naive Bayes obtained the lowest accuracy rate of 90.901% as the algorithm modeled 

a binary classifier where the leaves were composed of only two samples (bot and benign) and only one 

tree. After splitting the ISOT HTTP Botnet Dataset, it was remarkable that Naive Bayes improved its 

accuracy in detecting the minority classes, scoring higher than 95%; but decreased to 56.266% when 

detecting the majority classes. Nonetheless, this result was significantly higher when compared to the 

original dataset. Likewise, there is also an improvement in the SVM accuracy as the original dataset 

predicted correctly few classes, but after partitioning the accuracy rate considerably improved. 

 
Table 8. Comparison between the CIC-AWS-2018 and ISOT HTTP Botnet detection models with GS. 

 

Dataset ML Detection Model Accuracy 

 Random Forest 99.999% 
 Decision Tree 99.999% 

Dataset CIC-AWS-2018 (filtered by TCP) K-nearest neighbors 99.984% 
 Gaussian Naïve Bayes 90.901% 

 Support Vector Machine (SVM) 94.821% 

 Random Forest 79.115% 
 Decision Tree 78.893% 

ISOT HTTP Botnet Dataset K-nearest neighbours 69.054% 
 Gaussian Naïve Bayes 46.389% 

 Support Vector Machines (SVM) 70.012% 

 Random Forest 99.944% 
 Decision Tree 99.902% 

ISOT HTTP Botnet Dataset K-nearest neighbours 91.042% 
 Gaussian Naïve Bayes 96.554% 

 Support Vector Machines (SVM) 98.995% 

 Random Forest 81.044% 
 Decision Tree 80.437% 

ISOT HTTP Botnet Dataset K-nearest neighbours 75.731% 
 Gaussian Naïve Bayes 56.266% 

 Support Vector Machines (SVM) 75.413% 

 
The next evaluation criterion was the execution time measured for the different models, which are 

charted in Figures 4 and 5. For the CIC-AWS-2018 dataset (Figure 4), the highest processing overhead, 

before and after combined with Grid Search, was generated by KNN. On the opposite, the models 

with less execution time are Naive Bayes and Decision Tree. As reviewed above, the Naive Bayes 

model shows imprecise results when detecting different botnet samples and is also the least accurate 

model. The execution time measured for the ISOT HTTP Botnet dataset (Figure 5) shown, in contrast 

to the first analysis,  the highest execution time with SVM. The same indicator was measured for  the 

minority and majority-class analysis of the dataset,  and their results are shown in Figures 6   and 7, 

respectively. In both scenarios, SVM had the least performance with execution times of 15.65 and 10.38 

s, which considerably exceeded the other classifiers. 
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Figure 4. Execution time in different models using CIC-AWS-2018 dataset filtered by TCP. 
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Figure 5. Execution time in different models using ISOT HTTP Botnet dataset. 
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Figure 6. Execution time in the different models with minority class on the ISOT HTTP Botnet dataset. 
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Figure 7. Execution time in the different models with majority class on the ISOT HTTP Botnet dataset. 

4.4. Cross-Validation Results 

A 5-fold cross-validation was considered to check the models’ accuracy. Table 9 details the 

measurements obtained by analyzing the CIC-AWS-2018 dataset and the ISOT HTTP Botnet dataset. 

Average accuracy rates above 90.236% were calculated in the CIC-AWS-2018 dataset with minimal 

variances between the base model and the GS refinement. On the other hand, the accuracy variations 

in the ISOT HTTP Botnet dataset are more visible but exhibit the pattern mentioned in the previous 

section, having Naive Bayes and SVM as the least scoring methods. 

 
Table 9. Average accuracy of the different models in both datasets. 

 
 

Configuration ML Model CIC-AWS-2018   ISOT HTTP Botnet  

 
 
 
 
 
 
 
 
 
 
 

 
4.5. Prediction Results 

For both datasets, using the features already defined in Table 1, the construction of the models was 

carried out. The parameters defined for each models without GS are shown in Appendix A whereas 

Appendix B details the parameter calibration after GS optimization. For each model, a range of possible 

values was defined in order to find a set of hyper-parameters that optimize model performance. Finally, 

Table 2 shows the final results using GS, and it also summarizes the list of parameters used in the 

implementation. Thus, the prediction results for the different datasets were obtained. 

Prediction tests were performed for the models before and after implementing the Grid Search 

algorithm on the CIC-AWS-2018 dataset, and the results obtained are shown in Table 10. It is noted that 

Decision Tree, Random Forest and K-Nearest Neighbors models correctly predicted the samples and 

were also able to recognize a benign sample or bot with 100% probability. However, after refining their 

models with GS, Naive Bayes was not correctly predicting bot samples; which indicates the existence 

of samples that have been classified as benign instead of bot. The same applies for the SVM algorithm 

regardless of the GS calibration. 

E
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Random Forest Decision Tree KNN 

Detection Models 

Naive Bayes SVM Random Forest Decision Tree KNN 

+ GS 

Naive Bayes SVM 

 

Type (TCP) Original Minority Class Majority Class 

Random Forest 99.999% 76.737% 99.909% 80.976% 
Decision Tree 99.999% 74.705% 99.916% 80.388% 

Base K-Nearest Neighbors 99.984% 68.336% 88.934% 74.768% 
Gaussian Naïve Bayes 90.236% 28.563% 29.919% 46.877% 

Support Vector Machine 94.843% 69.864% 97.624% 75.209% 

Random Forest 99.998% 79.199% 99.909% 81.073% 
Decision Tree 99.998% 79.077% 99.916% 80.620% 

Grid Search K-Nearest Neighbors 99.983% 68.340% 88.934% 74.765% 
Gaussian Naïve Bayes 90.893% 46.483% 96.557% 56.462% 

Support Vector Machine 94.797% 69.864% 97.711% 75.695% 
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Table 10. Prediction results using the CIC-AWS-2018 dataset filtered by TCP. 
 

Without GS With GS 

Detection Models Predicted 
Class 

Success 
Probability 

Predicted 
Class 

Success 
Probability 

Expected Class 

 

Random Forest Benign 100.00% Benign 100.00%  

Decision Tree Benign 100.00% Benign 100.00% 
KNN Benign 100.00% Benign 100.00% Benign 
Naive Bayes Benign 100.00% Benign 100.00%  

SVM Benign 100.00% Benign 100.00%  

Random Forest Bot 100.00% Bot 100.00%  

Decision Tree Bot 100.00% Bot 100.00%  

KNN Bot 100.00% Bot 100.00% Bot 
Naive Bayes Bot 100.00% Benign 100.00%  

SVM Benign 64.850% Benign 64.680%  

 

Prediction tests were also performed for the ISOT HTTP Botnet dataset as shown in Table 11. 

There, the Decision Tree model correctly predicted all the samples with a 100% rate. This result might 

warn a possible model overfitting, but this situation was further validated by running the Grid Search 

algorithm to optimize the hyperparameters of each model. Under such a consideration, it was observed 

that Decision Tree correctly predicted the majority of botnet samples with 100% probability, except for 

the Blue botnet that was classified as a Zeus with a probability of 74.840%. Random Forest obtained 

similar results for the majority of botnet specimens, except for Blue as mentioned before. In addition, 

the samples that were correctly classified exposed probability variations on the analyzed specimens. 

An example of this was found with Random Forest, which initially classified Citadel with a 100% rate, 

but the GS optimization slightly decreased the hit rate to 98.690%. Similar to the Random Forest model, 

the K-Nearest Neighbors model incorrectly classified the Zyklon botnet as Citadel with 100% 

probability. Comparing this model with the rest of the classifiers, it was noted that in Table 5 the K-

Nearest Neighbors model before and after implementing the GS algorithm does not exceed 70% 

accuracy and predicts the Zyklon botnet with a 53.061% rate. Unlike other classifiers, the Naive Bayes 

model initially predicted only Citadel and Citadel2 botnets, and when the GS model was analyzed  it 

was observed that Blackout, Blue, Liphyra and Black Energy were correctly predicted with higher 

probability. Based on this analysis, it can be deduced that Naive Bayes might lead to less predictable 

results when dealing with botnet detection. Finally, both Support Vector Machine (SVM) models (base 

implementation and GS optimization) were unable to predict the botnet samples. This model 

exhibited the same unpredictability issues as Naïve Bayes. Lower hit rates are associated with the 

scarcity of samples on certain botnet specimens. 

Furthermore, the prediction results when analyzing the minority and majority classes separately 

are shown in Tables 12 and 13, respectively. There, Random Forest, Decision Tree and, K-Nearest 

Neighbors correctly predicted all botnet types with a high success rate each, and Support Vector 

Machine (SVM) performed a proper classification as well. On the contrary,  Naïve Bayes model    was 

initially not correctly predicting five botnet specimens. Blackout was mistakenly classified as Liphyra 

62.620% certainty, and Liphyra,  Black Energy,  and Zylon were incorrectly classified as  Blue. Similarly, 

Zeus was classified as Citadel with a 99.900% certainty. These results notably improved after applying 

the Grid Search algorithm, where the model failed on predicting only two botnet types. Zeus was 

classified as Citadel with a high hit rate and Zyklon was wrongly classified as Black Energy with a 

99.500% certainty. Once again, Naive Bayes behaves unexpectedly in the assessed scenarios. 
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Detection 

Table 11. Prediction results using ISOT HTTP Botnet Dataset. 
 

  Without GS With GS  

Model Predicted 
Class 

Success 
Probability 

Predicted 
Class 

Success 
Probability 

Expected Class 

Random Forest Blackout 100.000% Blackout 100.000%  

Decision Tree Blackout 100.000% Blackout 100.000%  

KNN Blackout 100.000% Blackout 100.000% Blackout 
Naive Bayes Liphyra 69.210% Blackout 100.000%  

SVM Blackout 43.670% Blackout 43.670%  

Random Forest Blue 51.770% Zeus 74.420%  

Decision Tree Blue 100.000% Zeus 74.840%  

KNN Blue 100.000% Blue 100.000% Blue 
Naive Bayes Liphyra 59.490% Blue 100.000%  

SVM Zeus 59.410% Zeus 59.410%  

Random Forest Liphyra 100.000% Liphyra 100.000%  

Decision Tree Liphyra 100.000% Liphyra 100.000%  

KNN Liphyra 100.000% Liphyra 100.000% Liphyra 
Naive Bayes Blue 52.190% Liphyra 100.000%  

SVM Citadel2 48.670% Citadel2 48.670%  

Random Forest Black Energy 100.000% Black Energy 100.000%  

Decision Tree Black Energy 100.000% Black Energy 100.000%  

KNN Black Energy 100.000% Black Energy 100.000% Black Energy 
Naive Bayes Citadel 44.770% Black Energy 99.920%  

SVM Black Energy 54.400% Black Energy 54.400%  

Random Forest Zeus 84.290% Zeus 74.600%  

Decision Tree Zeus 100.000% Zeus 74.840%  

KNN Zeus 100.000% Zeus 100.000% Zeus 
Naive Bayes Liphyra 60.660% Blue 100.000%  

SVM Zeus 60.050% Zeus 60.050%  

Random Forest Zyklon 100.000% Zyklon 100.000%  

Decision Tree Zyklon 100.000% Zyklon 100.000%  

KNN Citadel 100.00% Citadel 100.00% Zyklon 
Naive Bayes Blue 56.840% Citadel 99.980%  

SVM Zeus 50.130% Zeus 50.130%  

Random Forest Citadel 100.000% Citadel 98.690%  

Decision Tree Citadel 100.000% Citadel 99.550%  

KNN Citadel 100.000% Citadel 100.000% Citadel 
Naive Bayes Citadel 91.950% Liphyra 100.000%  

SVM Citadel2 45.779% Citadel2 45.779%  

Random Forest Citadel2 100.000% Citadel2 100.000%  

Decision Tree Citadel2 100.000% Citadel2 100.000%  

KNN Citadel2 100.000% Citadel2 100.000% Citadel2 
Naive Bayes Citadel2 74.860% Zyklon 99.940%  

SVM Citadel2 88.030% Citadel2 88.030%  
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Table 12. Prediction results using minority classes included on the ISOT HTTP Botnet Dataset. 
 

 

Detection 
Without GS With GS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 13. Prediction results using majority classes included on the ISOT HTTP Botnet Dataset. 
 

 

Detection 
Model 

Without GS With GS 

Predicted  Success Predicted  Success 
Expected Class 

Class Probability  Class Probability 
 

Random Forest Zeus 100.000% Zeus 100.000%  

Decision Tree Zeus 100.000% Zeus 100.000% 
KNN Zeus 100.000% Zeus 100.000% Zeus 
Naive Bayes Citadel 99.900% Citadel 100.000%  

SVM Zeus 93.260% Zeus 92.810%  

Random Forest Citadel 100.000% Citadel 100.000%  

Decision Tree Citadel 100.000% Citadel 100.000%  

KNN Citadel 100.000% Citadel 100.000% Citadel 
Naive Bayes Citadel 91.950% Citadel 100.000%  

SVM Citadel 52.020% Citadel 52.510%  

Random Forest Citadel2 100.000% Citadel2 100.000%  

Decision Tree Citadel2 100.000% Citadel2 100.000%  

KNN Citadel2 100.000% Citadel2 100.000% Citadel2 
Naive Bayes Citadel2 74.860% Citadel2 99.080%  

SVM Citadel2 82.500% Citadel2 80.140%  

 

5. Discussion 

Our experimental validation using GS has shown a substantial improvement in the prediction 

of the different botnet specimens even in highly unbalanced classes compared to the results shown 

Model Predicted 
Class 

Success 
Probability 

Predicted 
Class 

Success 
Probability 

Expected Class 

Random Forest Blackout 100.000% Blackout 100.000%  

Decision Tree Blackout 100.000% Blackout 100.000%  

KNN Blackout 100.000% Blackout 100.000% Blackout 
Naive Bayes Liphyra 62.620% Blackout 100.000%  

SVM Blackout 70.700% Blackout 71.460%  

Random Forest Blue 100.000% Blue 100.000%  

Decision Tree Blue 100.000% Blue 100.000%  

KNN Blue 100.000% Blue 100.000% Blue 
Naive Bayes Blue 50.530% Blue 100.000%  

SVM Blue 96.690% Blue 96.760%  

Random Forest Liphyra 100.000% Liphyra 100.000%  

Decision Tree Liphyra 100.000% Liphyra 100.000%  

KNN Liphyra 100.000% Liphyra 100.000% Liphyra 
Naive Bayes Blue 60.630% Liphyra 100.000%  

SVM Liphyra 94.780% Liphyra 94.040%  

Random Forest Black Energy 100.000% Black Energy 100.000%  

Decision Tree Black Energy 100.000% Black Energy 100.000%  

KNN Black Energy 100.000% Black Energy 100.000% Black Energy 
Naive Bayes Blue 72.350% Black Energy 100.000%  

SVM Black Energy 72.740% Black Energy 72.980%  

Random Forest Zyklon 100.000% Zyklon 100.000%  

Decision Tree Zyklon 100.000% Zyklon 100.000%  

KNN Zyklon 100.000% Zyklon 100.000% Zyklon 
Naive Bayes Blue 69.090% Black Energy 99.500%  

SVM Zyklon 95.320% Zyklon 95.520%  
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by Alenazi et al. [26] and Zhou and Pezaros [25] in their previous proposals. In both research works, 

it was not possible to grasp important considerations regarding the evaluation of the algorithms and 

the optimization of their hyper parameters. 

When analyzing the original CIC-AWS-2018 dataset, the results showed that the Random Forest, 

Decision Tree and K-Neighbors models yield a classification accuracy close to 100%, similar to the 

results exposed by Zhou and Pezaros [25], with the difference that our Naive Bayes implementation 

obtained 64.994%, which, albeit not close to the highest ones, was more accurate than the results 

obtained by the same authors (52%). Although Zhou and Pezaros [25] achieved high accuracy rates, 

it was not possible to conclude whether their results were caused by an overfit. However, our approach 

underscores that by filtering the CIC-AWS-2018 dataset by TCP protocol was possible to counteract the 

overfitting due to the higher presence of bot samples associated to this transport protocol and using 

the Grid Search algorithm the hyperparameters of each model were optimized. It was observed at the 

same time that the Random Forest, Decision Tree and K-Neighbors models attained considerably 

higher precision compared to the Naive Bayes and Support Vector Machine models, which could not 

exceed 87% precision when detecting a botnet. Moreover, Random Forest, Decision Tree and K-

Neighbors models correctly predicted bots and benign samples with higher hit rates in comparison to 

Naïve Bayes and SVM. When assessing the model performance, the difference between the classifiers is 

that Decision Trees and Random Forest models, with high accuracy and precision rates, were also 

capable of analyzing large amounts of data in less time and thus surpassing the other classifiers. 

On the other hand, a detailed evaluation was performed for each specimen of the ISOT HTTP 

Botnet dataset in terms of accuracy, precision and recall compared with the work of Alenazi et al. [26]. 

Although in the research conducted by Alenazi et al. [26] the performance of the Random Forest  and 

Decision Tree models outperformed the Naive Bayes model, it was not performed an in-depth 

inspection on the predictive capabilities of each model. After using the Grid Search algorithm to 

optimize the hyperparameters, their results showed significant improvements in accuracy, but low 

recall rates were observed when predicting specimens with few samples. On the opposite, obtaining 

higher precision rates when evaluating specimens with more samples, so it is inferred they are working 

with an unbalanced dataset. Bearing this in mind, our approach emphasizes the importance of dividing 

the dataset into minority and majority classes, thus modifying the “class_weight” parameter in Random 

Forest, Decision Tree and SVM models, both at base training and with GS. By doing so, our models 

were able to correctly predict the different botnet specimens (both minority and majority botnet classes) 

excepting the Naive Bayes model, which failed to predict the Zeus and Zyklon botnets. Likewise, it was 

observed that the Random Forest and Decision Tree models shown the highest accuracy and precision 

rates for detecting the minority and majority classes; however, the Naive Bayes failed on detecting the 

majority classes. As it was shown in the previous performance analysis, Decision Tree and Random 

Forest could analyze large amounts of data with less processing overhead, hence outperforming the 

other classifiers when building their models. 

As  shown  by  the  results,  the  selection  of  the  most  relevant  features  played  an important 
role. A decision grounded on previous research works where the behavioral metrics disclosed 

communication patterns for each botnet type in real testing environments. An important fact related 

to the creation of the CSE-CIC-IDS2018 dataset and the ISOT HTTP Botnet Dataset is that machine 

learning techniques had already been used to extract the most relevant malware behavioral features 

from the traffic captured in the network. For all the different types of attacks, the most relevant 

behavioral metrics for botnet detection have been considered grounded on the research works of 

Gonzalez-Cuautle et al. [16] and Sharafaldin et al. [41], who have enumerated the most relevant 

characteristics for training the models. In our research, two additional characteristics were included by 

analyzing the feature_importances criterion in order to improve the precision of the Random Forest 

algorithm. Besides such considerations, it was worth comparing the accuracy obtained by the default 

configuration of the classifiers, so that the application of Grid Search allowed to find the most optimal 
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hyperparameters, which notably contributed to boost up a more accurate detection based on the 

observed results. 

Finally, in the light of the obtained results, it can be concluded that Random Forest and Decision 

Tree models are generally more appropriate for detecting botnets by classifying large amounts of 

samples and still performing efficiently. The capabilities of such models demonstrate their suitability to 

develop defensive countermeasures against malware, a claim reasserted by this research after a deepen 

analysis. On the opposite, it was found that Naive Bayes showed mostly inaccurate results, a fact 

explained by the “Naïve assumption” where all the features included in the modeling process are 

independent from each other, thus improperly describing the behavior of botnets in the aftermath. 

6. Conclusions 

Throughout this research, the state of the art on botnet detection has been thoroughly analyzed in 

order to understand the characterization of these network threats, their modus operandi, and special 

attention has been put on identifying the most relevant supervised detection methods. It was intended 

to set a comparative baseline both at evaluation methodology and classification accuracy, without 

overlooking any consideration regarding the models parameterization, training and validation of the 

detection models, without overlooking any evaluation criteria. For our analysis, it have been 

considered diverse machine-learning approaches to detect different botnet specimens. In order to set 

up an evaluation baseline, there have been selected two botnet reference datasets have been examined 

in detail—CIC-AWS-2018 and ISOT HTTP Botnet, both containing behavioral metrics that have led 

to perform traffic flow analysis. The former with two bot samples (Zeus and Ares) and    the latter 

with eight botnet specimens. Feature selection has been guided by the contributions of similar 

research works which led to distinguishing two broader feature categories—descriptive and 

behavioral. Training and validation of the selected machine learning models have been addressed to 

benchmark the overall classification accuracy. TThe issue of unbalanced datasets has been considered, 

which led to differentiation of the analysis guided by majority and minority classes.  In addition,  the 

Grid Search algorithm was used to optimize its hyperparameters, which has introduced significant 

improvements in the classification by adjusting different supervised learning algorithms. As suggested 

by the proposed methodology, an in-depth evaluation was carried out stressing the comparative 

analysis of traffic flow patterns. It poses the main contribution of our research towards the state of the 

art in the area of botnet detection. Broadly speaking, it has been shown that Random Forest and 

Decision Tree models outperformed the rest of the machine learning models. In contrast, Naive Bayes 

showed the lowest performance based on the overall accuracy. Therefore, it is shown that it is possible 

to infer the detection of botnets from behavioral patterns. When measuring the execution time, it can 

be seen that the Support Vector Machines model still poses the main drawbacks in terms of resource 

consumption, which has been considerably higher than the rest of the classifiers. 

In the light of the extensive evaluation performed, the suitability of machine learning for botnet 

recognition has been proven in this paper. This research supports the outcomes of similar research 

works based on machine learning for detecting different botnet specimens. Although it has been clear 

that the proper calibration and training of the machine learning models directly influences their 

precision rates, their adequacy is yet to be validated with more botnet specimens. Future research 

outcomes will be focused on extending the evaluation methodology to make a more robust and 

exhaustive comparison with further supervised deep learning approaches. It is also intended to 

expand the range of botnet families to be analyzed. Furthermore, the methodology shall be extended 

to other botnet datasets as well as their real-time evaluation in network testbeds. 
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Appendix A. Initial Hyperparameters 

 
Table A1. Algorithms with Their Initial Hyperparameters λ. 

 

CIC-AWS-2018 ISOT HTTP Botnet 
Detection 

λ
 

Filtered Minority and 

 
 
 
 
 
 
 

 

dual or primal optimization problem 

 
12,000 12,000 12,000 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Model Original by TCP Original Majority Class 

Algorithm used to compute nearest neighbors KD tree KD tree KD tree KD tree 

KNN 
Number of neighbors to use 2 2 1 1 
Leaf size 30 30 30 30 

Weight function used in prediction Uniform Uniform Uniform Uniform 

Regularization parameter C 175 175 175 175 
Estimate class weights for unbalanced datasets — — — Balanced 
Penalty l2 l2 l2 l2 
multi-class strategy One-vs-rest One-vs-rest One-vs-rest One-vs-rest 

SVM 
Select the algorithm to either solve the 

False False False False 

Tolerance for stopping  criteria 
Maximum number of iterations to be run 
Kernel type to be used in algorithm 

1 × 10−10 

Linear 

1 × 10−10 

Linear 

1 × 10−10 

Linear 

1 × 10−10 

12,000 
Linear 

Maximum tree depth 
Estimate class weights for unbalanced datasets 
Number of features for best split 

51 
— 
19 

14 
— 
19 

51 
— 
20 

35 
Balanced 
20 

DT Function to measure split quality GINI GINI GINI GINI 
Strategy used to choose split at each node Best Best Best Best 
Min. Number of samples required to be at leaf node 1 1 1 1 

Min. Number of samples required to split 2 2 2 2 

Use bootstrap samples when building trees True True True True 
Estimate class weights for unbalanced datasets — — — Balanced 
Function to measure split quality GINI GINI GINI GINI 

RF 
Maximum tree depth 35 22 35 35 

 Number of features for best split 19 19 20 20 
 Min. number of samples required to be at leaf node 1 1 1 1 
 Min. number of samples required to split 2 2 2 2 

 Number of trees in forest 12 12 12 12 

NGB Smoothing variable 1 × 10−10 1 × 10−10 1 × 10−10 1 × 10−10 
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Appendix B. Inherent Hyperparameters and Values 

 
Table A2. Algorithms with Their Inherent Hyperparameters and Values. 

 
Detection 

Model 
λ
 

 
CIC-AWS-2018 
Filtered by TCP 

Using GS Original 

 
ISOT HTTP Botnet Using GS 

Minority and 
Majority Classes 

 

KNN 

Algorithm used to compute nearest neighbors [‘kd_tree’,‘ball_tree’,‘brute’] [‘kd_tree’,‘ball_tree’,‘brute’] [‘kd_tree’,‘ball_tree’,‘brute’] 
Metric minkowski minkowski minkowski 

Leaf size [30,50,80] [30,50,70] [30,50,70] 
Number of neighbors to use [4,10,2] [4,10,2] [2,10,1] 

Regularization parameter C [10,100,175] [10,100,175] 10 
Estimate class weights for unbalanced datasets — — Balanced 

SVM 
Penalty parameter l2 

Tolerance for stopping criteria [1 × 10 −20 ,1 × 10 −10 ,1 × 10−5 

l2 

] [1 × 10 −20 ,1 × 10 −10 ,1 × 10−5 

l2 

] [1 × 10 −20 ,1 × 10 −10] 

Maximum number of iterations to be run 12000 12000 12000 
Kernel type to be used in algorithm Linear Linear Linear 

Maximum tree depth [20,30,14] [20,30,10] [20,35,10] 
Estimate class weights for unbalanced datasets — — Balanced 

DT Number of features for best split 19 20 20 
Min.  Number of samples required to be at leaf node [10,20,2] [10,20,2] [10,20,1] 
Min.  Number of samples required to split [10,20,2] [10,20,2] [10,20,2] 

Maximum tree depth [22,51,10] [20,50,10] [20,35,10] 
Estimate class weights for unbalanced datasets — — Balanced 
Number of features for best split 19 20 20 

RF 
Min.  Number of samples required to be at leaf node. [10,20,30] [10,20,30] [10,20,1] 
Min.  Number of samples required to split [10,20,30] [10,20,30] [10,20,2] 
Number of trees in forest 25 12 12 

NBG Smoothing Variable [1 × 10−20,1 × 10−10,1 × 10−5] [1 × 10−20,1 × 10−10,1 × 10−5] [1 × 10−20,1 × 10−10,1 × 10−5] 
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