Portable point-of-use photoelectrocatalytic device provides rapid water disinfection

Montenegro-Ayo, R.a,b, Barrios, A.C.a, Mondal, I.c, Bhagat, K.a,d, Morales-Gomero, J.C.b,e, Abbaszadegan, M.c, Westerhoff, P.a, Perreault, F.a, Garcia-Segura, S.e

Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, United States

NF Water and Environmental Technology Center, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, United States

Abstract

Portable water purification devices are needed to provide safe drinking water in rural communities, developing communities with low quality centralized water distribution, and military or recreational applications. Filtration, ultraviolet light, or chemical additives provide a spectrum of alternatives to remove pathogens from water. For the first time, we design, fabricate and demonstrate the performance of a small portable photoelectric point-of-use device, and document its performance on pathogen inactivation. The device utilizes a commercial teacup from which TiO2 nanotube photoanodes were produced in-situ and, with a small rechargeable battery powered nm light emitting diode, was able to achieve -log inactivation of Escherichia coli in s and -log of Legionella in s of treatment in model water samples. Treatment of natural water achieved a -log bacteria inactivation after s due to matrix effects.

The electro-photocatalytic disinfection reactor in a kup (e-DRINK) can provide a feasible and affordable solution to ensure access to clean water. More broadly, this work demonstrates the potential for illumination to improve the efficiency of electrocatalytic surfaces. © 2020 Elsevier B.V.

Author keywords

- Electrochemical advanced oxidation processes
- Escherichia coli
- Legionella
- TiO2 nanotubes photo-anodes
- Translational technology
- Water treatment

Indexed keywords

Engineering controlled terms:
- Additives
- Developing countries
- Disinfection
- Escherichia coli
- Military applications
- Oxide minerals
- Potable water
- Titanium dioxide
- Water filtration
- Water supply systems

Engineering uncontrolled terms:
- Bacteria inactivation
- Developing communities
- Pathogen inactivation
- Photocatalytic disinfections
- Photoelectrocatalytic
- Point-of-use devices
- Safe drinking water
- Water distributions

Engineering main heading:
- Water treatment

GEOBASE Subject Index:
- design
- disinfection
- pathogen
- performance assessment
- purification
- water treatment

Cited by 0 documents

Inform me when this document is cited in Scopus:

Related documents

Doping TiO2 with CuSO4 enhances visible light photocatalytic activity for organic pollutant degradation

de Luna, M.D.G., Garcia-Segura, S., Mercado, C.H. (2020) Environmental Science and Pollution Research

Niobium oxide catalysts as emerging material for textile wastewater reuse: Photocatalytic decolorization of azo dyes

Photon flux influence on photoelectrochemical water treatment

View all related documents based on references

Find more related documents in Scopus based on:

Authors

Keywords
Funding details

Funding sponsor	Funding number	Acronym
Adams State University | 1361815, NNCI-ECCS-1542160 | ASU
National Science Foundation | | NSF
See opportunities by NSF

Achievement Rewards for College Scientists Foundation | ARCS

Funding text

This work was partially funded by the National Science Foundation (NSF) through the Nanotechnology-Enabled Water Treatment Nanosystems Engineering Research Center under project EEC-1449500 and the NSF Water and Environmental Technology Center at ASU (award number). We acknowledge the use of facilities within the Eyring Materials Center at Arizona State University supported in part by the National Science Foundation (NNCI-ECCS-1542160). We thank Dr. Ariel Atkinson and Krishishv Venkatesh for collecting the natural water samples for the experiment and for providing characterization data. A.C.B. also acknowledges the support of the Dean’s Fellowship from the Ira A. Fulton Schools of Engineering, a Scholar Award given by the International Chapter of the P.E.O. Sisterhood, and the Achievement Rewards for College Scientists Foundation award.

References (54)

1. Adusei-Gyamfi, J., Ouddane, B., Rietveld, L., Cornard, J.-P., Criquet, J.
 Natural organic matter-cations complexation and its impact on water treatment: A critical review
 www.elsevier.com/locate/watres
doi:10.1016/j.watres.2019.05.064
 View at Publisher

2. Amit, R.K., Sasidharan, S.
 Measuring affordability of access to clean water: A coping cost approach
 www.elsevier.com/locate/resconrec
doi:10.1016/j.resconrec.2018.11.003
 View at Publisher

View at Publisher

View at Publisher

View at Publisher

View at Publisher

View at Publisher
 LED revolution: Fundamentals and prospects for UV disinfection applications
 http://pubs.rsc.org/en/journals/journalissues/ew#!recentarticles&adv
doi: 10.1039/c6ew00241b
 View at Publisher

 Disinfection of Legionella pneumophila by photocatalytic oxidation
 www.elsevier.com/locate/watres
doi: 10.1016/j.watres.2006.11.033
 View at Publisher

 Inactivation of E. coli, Legionella, and Pseudomonas in tap water using electrochemical disinfection

13. Cutler, D., Miller, G.
 The role of public health improvements in health advances: The twentieth-century United States
 View at Publisher

 Influence of surface disorder, oxygen defects and bandgap in TiO₂ nanostructures on the photovoltaic properties of dye sensitized solar cells
doi: 10.1016/j.solmat.2015.08.036
 View at Publisher

15. Dennis, P.J.
 (1988) Isolation of Legionella From Environmental Specimens, pp. 31-44. Cited 40 times.
 T.G. Harrison A.G. Taylor John Wiley & Sons, Inc

 Light-harvesting Ni/TiO₂ nanotubes as photo-electrocatalyst for alcohol oxidation in alkaline media
 http://www.journals.elsevier.com.ezproxy.ulima.edu.pe/electrochimica-acta/
 View at Publisher

17. Dimapilis, E.A.S., Hsu, C.-S., Mendoza, R.M.O., Lu, M.-C.
 Zinc oxide nanoparticles for water disinfection (Open Access)
 http://www.journals.elsevier.com.ezproxy.ulima.edu.pe/sustainable-environment-research
doi: 10.1016/j.serj.2017.10.001
 View at Publisher

Cost comparison of centralized and decentralized wastewater management systems using optimization model

http://www.elsevier.com/inca/publications/store/6/2/2/8/7/1/index.html
doi: 10.1016/j.jenvman.2018.01.081

View at Publisher

Fabrication of double-walled titania nanotubes and their photocatalytic activity

http://pubs.acs.org/journal/ascceg
doi: 10.1021/sc4002142

View at Publisher

Effect of catalyst calcination temperature in the visible light photocatalytic oxidation of gaseous formaldehyde by multi-element doped titanium dioxide

http://www.springerlink.com/content/0944-1344
doi: 10.1007/s11356-018-1720-0

View at Publisher

Photoelectrochemical oxidation of phenol with nanostructured TiO\textsubscript{2}-PANI electrodes under solar light irradiation

doi: 10.1016/j.seppur.2018.03.074

View at Publisher

Fluence (UV Dose) Required to Achieve Incremental Log Inactivation of Bacteria, Protozoa, Viruses and Algae. IUVA News 18 (2006)

Towards visible-light photocatalysis for environmental applications: band-gap engineering versus photons absorption—a review

http://www.springerlink.com/content/0944-1344

View at Publisher
<table>
<thead>
<tr>
<th>33</th>
<th>Martínez-Huitle, C.A., Brillas, E.</th>
<th>Electrochemical alternatives for drinking water disinfection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>doi: 10.1002/anie.200703621</td>
<td></td>
</tr>
<tr>
<td></td>
<td>View at Publisher</td>
<td></td>
</tr>
</tbody>
</table>

| 34 | Martínez-Santos, P. | Does 91% of the world's population really have “sustainable access to safe drinking water”?

	http://www.tandf.co.uk/journals/titles/07900627.asp
	doi: 10.1080/07900627.2017.1298517
	View at Publisher

	www.nature.com/natsustain/
	doi: 10.1038/s41893-018-0046-8
	View at Publisher

	www.elsevier.com/locate/scitotenv
	doi: 10.1016/j.scitotenv.2017.10.080
	View at Publisher

38	Moreira, F.C., Boaventura, R.A.R., Brillas, E., Vilar, V.J.P.	Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters
	www.elsevier.com/inca/publications/store/5/2/3/0/6/6/index.html	
	doi: 10.1016/j.apcata.2016.08.037	
	View at Publisher	

| | doi: 10.1016/j.electacta.2017.11.103 |
| | View at Publisher |
40 Parker Fiebelkorn, A., Person, B., Quick, R.E., Vindigni, S.M., Jhung, M., Bowen, A., Riley, P.L.

Systematic review of behavior change research on point-of-use water treatment interventions in countries categorized as low- to medium-development on the human development index

doi: 10.1016/j.socscimed.2012.02.011

View at Publisher

41 Pichel, N., Vivar, M., Fuentes, M.

The problem of drinking water access: A review of disinfection technologies with an emphasis on solar treatment methods

doi: 10.1016/j.chemosphere.2018.11.205

View at Publisher

42 Pires, R.H., Brugnera, M.F., Zanoni, M.V.B., Giannini, M.J.S.M.

Effectiveness of photoelectrocatalysis treatment for the inactivation of Candida parapsilosis sensu stricto in planktonic cultures and biofilms

doi: 10.1016/j.apcata.2015.11.036

View at Publisher

43 Rather, R.A., Lo, I.M.C.

Photoelectrochemical sewage treatment by a multifunctional g-C3N4/Ag/AgCl/BiVO4 photoanode for the simultaneous degradation of emerging pollutants and hydrogen production, and the disinfection of E. coli (Open Access)

View at Publisher

44 Rommozi, E., Giannakis, S., Giovannetti, R., Vione, D., Pulgarin, C.

Detrimental vs. beneficial influence of ions during solar (SODIS) and photo-Fenton disinfection of E. coli in water: (Bi)carbonate, chloride, nitrate and nitrite effects (Open Access)

(2020) Applied Catalysis B: Environmental, 270, art. no. 118877. Cited 4 times.

View at Publisher

45 Schwayne, D.O., Alum, A., Abbaszadegan, M.

Impact of environmental factors on legionella populations in drinking water (Open Access)

doi: 10.3390/pathogens4020269

View at Publisher

Westerhoff, P., Nalinakumari, B., Pei, P.

Kinetics of MIB and geosmin oxidation during ozonation

doi: 10.1080/01919510600892836

View at Publisher