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Abstract. The construction industry invests a large amount of effort and resources in 

construction processes such as the follow-up, control, and monitoring of construction works, which, 

compared to other areas, present a low level of automation. Thus, increasing automation would reduce 

the times and costs of such activities. This research aims to evaluate a computer vision technique to 

identify objects of interest in construction sites, from videos and images of drones and static 

surveillance cameras. The "You Look Only Once" (YOLO) object detection neural network was used 

to identify eight classes of objects in 1000 drone images and 1046 static camera images of a construction 

site, achieving an accuracy varying between 78.8% to 82.8% and 73.56% to 93.76%, respectively. The 

feasibility of using classification algorithms to identify complex objects such as trucks and cranes was 

verified. Its application can be extended to various other forms to have an intelligent and automated 

process of monitoring and control project construction activities. 

Abstract: artificial intelligence, machine learning, computer vision techniques, neural 

network models, construction monitoring, YOLO.  

1.  Introduction 

 

New trends in the construction industry are oriented towards the automation of follow-up, control, and 

monitoring phases, which are critical stages within the construction process [1]. These stages have direct 

control over the eventualities that may occur during the execution of the process and improve preventive 

and corrective decision-making processes, almost in real-time [2]. One of the most significant 

worldwide challenges that this sector is facing consists of improving the monitoring of construction 

projects to meet adequate deadlines and execution times [3]. Research in this area ranges from using 

computer vision techniques [4-7] to some more complex techniques and algorithms such as those of 

computational intelligence [8-10]. Other works monitor construction sites using the BIM (Building 

Information Modeling) methodology as a baseline and criteria for comparing the achieved progress [11-

12], working with static images and videos, and adapting the obtained vanishing lines to the equivalent 

perspective in the BIM model. 

On the other hand, the productivity of the construction sector in Peru has been affected, throughout 

the years, by the lack of automated and industrialized construction processes, low-quality control, and, 

consequently, delays in the schedule and cost overruns. However, both public and private institutions 

are aware of these setbacks and are interested in finding solutions through investments in new 
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technologies [13-14].  

To offer an improvement to the construction sector in the monitoring of construction processes, a 

supervised machine learning model is proposed as a monitoring tool that could identify, on an ongoing 

basis, situations that may affect the construction works. 

To this end, a methodology is proposed to monitor construction progress development using an object 

detector trained for objects commonly found in construction sites. A construction project under 

execution, located in Lima, Peru, is used as a case study. Drones and four high-resolution video cameras 

(installed at strategic points of the construction site) were used to capture videos and images from 

different angles and heights. Then, the obtained images were used to train the neural network model for 

object detection. Finally, this model automatically detects objects that constitute a visual obstruction to 

the built structure. 

2.  Methodology 

2.1.  Construction site and data generation devices 

The building under construction is a four-story building with a total area of approximately 11,696 m2 

located at the University of Lima, Lima, Peru. The work began in February 2020. Initially, a drone was 

used to obtain photographs from various angles around the area, and then, later, four cameras were 

installed at strategic points around the perimeter of the construction site at heights that vary between 12 

and 35 meters, as shown in Figure 1, all pointing towards the construction site. These cameras constantly 

capture high-resolution videos stored in the University of Lima’s servers for later processing. 

 

 

Figure 1. General plan of the construction site showing the location of the four cameras (left), and an 

example of the images obtained from each camera (right) 

 

2.2.  Proposed methodology to monitor construction progress development 

Videos are recorded from cameras located at strategic points around the area under construction (Figure 

1), as well as from drones, which are revised by a semi-automated selection process (Section 2.4) to 

obtain “clean” images. Nevertheless, these images still contain elements that obstruct the visualization 

of the constructed building, such as machinery (trucks, excavators, and cranes), people, and similar 

objects. 

The next step consists of preselecting or filtering the images using an artificial neural network, whose 

training allows the artificial intelligence algorithm to recognize the most common elements found in the 



 

 

 

 

 

 

construction area. These images are then filtered out (using Algorithm 2 described in section 3) for the 

next stage of the process, but they still have elements of the environment, such as nearby buildings that 

have already been constructed; therefore, it is necessary to apply a non-relevant background removal 

technique. Once a set of filtered images is available, they are sent to the processing stage responsible 

for identifying the main structural elements, such as tiles, walls, or columns. 

Figure 2 shows the proposed methodology to monitor construction progress development. The 

processes grouped under "Identify Backgrounds" and "Training System" are carried out only once per 

construction project, while the remaining stages can be repeated according to the desired frequency for 

the progress evaluation. The activities marked with "M" indicate a predominantly manual activity, while 

the activities in light blue correspond to those executed in the present investigation. 

 

Figure 2. Proposed methodology to monitor construction progress development. 

2.3.  Training System 

This stage is executed once per project before the filtering stage (section 2.4) since its purpose is to train 

the neural network with the objects, also referred to as the classes, that need to be identified (see the 

bottom left section in Figure 2). Around 1000 frames were selected from the drone videos, and the target 

objects in each frame were manually classified and labeled to train the neural network. These 1000 

frames were manually selected based on their point of view variability to avoid having several images 

from the same point in space if selected sequentially. It should be noted that the following eight relevant 

classes for the construction site were used in this training step: "Dump_truck", "Excavator", 

"Concrete_mixer", "Skid_steer", "Tower_crane", "Truck_crane", "Truck", and "Person" (Figure 3).  

    
  a) Dump Truck             b) Excavator                c) Concrete mixer              d) Truck crane 

 



 

 

 

 

 

 

                     
      e) Skid steer            f) Tower crane               g) Truck                h) Person 

Figure 3. Examples of the eight classes used for classification. 

2.4.  Data Filtering 

The purpose of filtering is to select “clean” images with the least possible amount of distracting or 

obstructing elements, such as machinery and people, both of which are very common in construction 

areas. To achieve this, videos are obtained from fixed cameras located in the construction areas. Frames 

are obtained from these videos in a pseudo-random manner to ensure an adequate variability among 

selected frames. The previously trained neural network (section 2.3) is then applied to identify these 

elements, and both the number of identified objects and their probability of success are obtained. Finally, 

only the images that contain detected objects whose quantity was less than the maximum allowed (k2), 

as well as an average detection probability value greater than the confidence level required (k3), are 

selected (Algorithm 2) to be processed on the next stage. Both k2 and k3 parameters are initially set to 

10 and 0.9, respectively, but can be adjusted to an environment’s particular characteristics. 

3.  Implementation and Results 

Figure 4 shows the components of the filtering process. This process performs the filtering of images 

after carrying out the identification of objects in the frames extracted from the videos, as previously 

introduced in section 2.4. 

 

Figure 4. Components of the filtering process. 

 

To ensure a certain degree of variability for the selected frames, a dedicated procedure was created 

(see Algorithm 1 below), which took as inputs the path of the videos, the type of files to use (mp4 files), 

the path where the resulting images are to be stored, and an arbitrary interval between frames (200 

frames), which can be adjusted based on the frames per second setting used to record the videos. This 

process’s results are stored in a text file (frames.txt) which contains the extracted frames. 



 

 

 

 

 

 

  

Algorithm 1: Frame extraction 

Inputs: Video file path, result path, image filter, interval between frames 

1. Get the list of files to process 

2. For each file: 

3.          Create a directory with the name of the video file                    

4.          Get the total list of frames 

5.          Capture frames to process according to a predefined interval 

6.          For each frame: 

7.                      Generate image in jpeg format 

8.                      Update the results file “frames.txt” 

9.                      Update the image counter 

Output: frames.txt file (including selected images/frames) 

 

The YOLO v4 (“You Look Only Once” version four) object detector [15] was used through its 

implementation in the Darknet library [16]. The default pre-trained weights were used as a starting point 

to train the neural network further to detect the eight classes mentioned before in section 2.3, using 

transfer learning. Details of the number of drone images used for training and validation and the obtained 

results are shown in Table 1, set to approximately 70% of the total number of images for training, and 

30% of the total for validation. While the total number of images in datasets 2 to 4 are the same, the 

distribution of such images between training and validation subsets was done randomly.  

 

Table 1. Neural network training and results using drone videos. 

N° of 

Dataset 

Training images 

(70%) 

Validation 

images (30%) 

Total images 

(100%) 

Highest 

MAP* 

1 351 111 462 82.76 % 

2 700 300 1000 79.00 % 

3 741 259 1000 78.77 % 

4 741 259 1000 79.38 % 

 *MAP = Mean Average Precision. 

 

Using a 50% IoU (Intersection over Union) shows that the first dataset (DS) has the greatest MAP 

(Mean Average Precision) of 82.76 %.  

After this stage, another training step was carried out using images obtained with the fixed cameras 

(Figure 1). Details of the number of training and validation images and their corresponding results are 

shown in Table 2. Like the drone images, the 1046 images for each dataset in this scenario were 

randomly distributed between training and validation subsets. 

  

Table 2. Neural network training and results using the fixed cameras.  

DS Training images 

(70%) 

Validation images 

(30%) 

Total images 

(100%) 

Highest 

MAP* 

1 351 111 462 73.56% 

2 733 313 1046 80.30% 

3 729 317 1046 84.20% 

4 733 313 1046 93.76% 

*MAP = Mean Average Precision. 

 

The results using a 50% IoU show that database four has the best MAP. Datasets three and four more 

than double the number of images of dataset number 1, and they were generated using more randomness. 



 

 

 

 

 

 

Thus, dataset four was selected due to its greatest MAP (93.76%). Comparing datasets four in Tables 1 

and 2, the results obtained with images from the four fixed cameras (Table 2) exceeds the accuracy of 

the results obtained with images coming from the drone (Table 1). 

The frames selected using Algorithm 1, included in the file frames.txt, were the input to the object 

detector, which was configured to generate a text file in JSON format containing the identification of 

the detected class, its location in the image (left, top, height, and width), and the probability of correct 

identification. To filter individual images, an algorithm was developed (Algorithm 2) that considered 

the maximum number of objects allowed in the image (k2=10 images) and a confidence threshold 

(k3=0.9) that configured how high the probability must be that the detected object was, in fact, the real 

object. If a particular detected object, like a crane, must be considered in further stages of the process, 

it can be included in a list (k4) to prevent its exclusion.  

 

 

Algorithm 2: Image filtering 

Input: Files (k1), maximum allowed objects (k2), confidence threshold (k3), classes to exclude from 

filtering (k4) 

1. Get a list of files to filter (k1) 

2. For each image: 

3.          Initialize counters                    

4.          For each detected class: 

5.                      If the class is not excluded (k4) 

6.                                    Increase item counter 

7.                                    Increase total confidence level 

8.          Obtain the average confidence level of the image 

9.          If total objects < (k1) and average confidence level > (k3) 

10.                    Add the image name to a list of filtered items 

Output: filtered.json file (including filtered images) 

 

4.  Conclusions and recommendations 

The construction project selected for this research is part of a broader project that seeks to automate the 

follow-up and monitoring of construction works. As part of the proposed methodology, this research 

concentrated on evaluating the level of precision of the YOLO v4 algorithm for identifying eight 

different types of objects commonly present in these environments. 

Using the images generated from drones the model precision ranged from 78.77 % to 82.76 %, while 

the precision using the ones from the cameras ranged from 73.56 % to 93.76 %. 

To continue improving the performance of object identification, it is recommended to evaluate the 

performance of other neural networks models such as EfficientDet [17] or the new version (v5) of YOLO 

[18] that was released after completing this research, focusing on models that put more emphasis on 

having higher average precision values rather than real-time speed detection.  

References 

[1] Yang J, Park M W, Vela P, and Golparvar-Fard M 2015 Construction performance monitoring 

via still images, time-lapse photos and video streams: Now, tomorrow, and the future 

Advanced Engineering Informatics pp 1-14 

[2] Kim C, Son H and Kim, C 2013 Fully automated registration of 3D data to a 3D CAD model for 

project progress monitoring Automation in Construction pp 1-8 

[3] Alizadehslehi S and Yitmen I 2018 A Concept for Automated Construction Progress Monitoring: 

Technologies Adoption for Benchmarking Project Performance Control Arabian Journal for 

Science and Engineering 44 pp 4993-5008 



 

 

 

 

 

 

[4] Golparvar-Fard M, Bohn J, Teizer J, Savarese S and Peña-Mora F 2011 Evaluation of image-

based modeling and laser scanning accuracy for emerging automated performance monitoring 

techniques Automation in Construction pp 1143-1155 

[5] Kim C, Son H and Kim C 2013 Automated construction progress measurement using a 4D 

building information model and 3D data Automation in Construction pp 75-82 

[6] Martinez P, Al-Hussein M and Ahmad R 2019 A scientrometic analysis and critical review of 

computer vision applications for construction Automation in Construction pp 1-17 

[7] Zhang L, Cao Y, McCabe B and Shahi A 2019 The adoption of Building Information Modelling 

in Canada 

[8] Bosché F, Ahmed M, Turkan Y and Hass R 2015 The value of integrating Scan-to-BIM and Scan-

vs-BIM techniques for construction monitoring using laser scanning and BIM: The case of 

cylindrical MEP components Automation in Construction pp 201-213 

[9] Son H, Bosché F and Kim C 2015 As-built data acquisition and its use in production monitoring 

and automated layout of civil infrastructure: A survey Advanced Engineering Informatics pp1-

12 

[10] Lei L, Zhou Y, Luo H and Love P 2019 A CNN-based 3D patch registration approach for 

integrating sequential models in support of progress monitoring Advanced Engineering 

Informatics pp 1-11 

[11] Han K K and Golparvar-Fard M 2015 Appearance-based material classification for monitoring 

of operation-level construction progress using 4D BIM and site photologs Automation in 

Construction pp 44-57 

[12] Asadi K, Ramshankar H, Noghabaei M and Han K 2019 Real-Time Image Localization and 

Registration with BIM Using Perspective Alignment for Indoor Monitoring of Construction 

Journal of Computing in Civil Engineering 33 p 04019031 

[13] Salinas J, Prado G 2019 Building information modeling (BIM) to manage design and construction 

phases of Peruvian public projects Building & Management pp 48-59 

[14] Palomino J, Hennings J, Echevarría V 2017 Quipukamayoc Vol 25 N° 47 pp 95-101  

[15] Bochkovskiy A, Wang C Y and Liao H Y M 2020 Yolov4: Optimal speed and accuracy of object 

detection arXiv preprint arXiv:2004.10934 

[16] Redmon J 2020 Darknet: Open Source Neural Networks in C https://pjreddie.com/darknet/. 

Accessed January 15, 2021 

[17] Tan M, Pang R and Le Q V 2020 Efficientdet: Scalable and efficient object detection In 

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition pp 

108781-10790 

[18] Jocher G, Nishimura K, Minerva T and Vilariño R 2020 YOLOv5 

https://github.com/ultralytics/yolov5. Accessed March 7, 2021 

https://pjreddie.com/darknet/
https://github.com/ultralytics/yolov5

