Confined benzene within InOF-1: Contrasting CO\textsubscript{2} and SO\textsubscript{2} capture behaviours

Barrios-Vargas, L.J.a
Ruiz-Montoya, J.G.b
Landeros-Rivera, B.c
Álvarez, J.R.a
Alvarado-Alvarado, D.a
Vargas, R.a
Martínez, A.d
González-Zamora, E.e
Cáceres, L.M.e
Morales, J.C.b,e
Ibarra, I.A.a

aLaboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU Coyoacán Ciudad de México, 04510, Mexico
bLaboratorio de Investigación de Electroquímica Aplicada, Facultad de Ciencias, Universidad Nacional de Ingeniería, Av. Tupac Amaru 210, Rímac Lima, Peru
cDepartamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 185, Col. Vicentina Iztapalapa Ciudad de México, C. P. 09340, Mexico

Abstract

The confinement of small amounts of benzene in InOF-1 (Bz@InOF-1) shows a contradictory behavior in the capture of CO\textsubscript{2} and SO\textsubscript{2}. While the capture of CO\textsubscript{2} is increased 1.6 times, compared to the pristine material, the capture of SO\textsubscript{2} shows a considerable decrease. To elucidate these behaviors, the interactions of CO\textsubscript{2} and SO\textsubscript{2} with Bz@InOF-1 were studied by DFT periodical calculations postulating a plausible explanation: (a) in the case of benzene and CO\textsubscript{2}, these molecules do not compete for the preferential adsorption sites within InOF-1, providing a cooperative CO\textsubscript{2} capture enhancement and (b) benzene and SO\textsubscript{2} strongly compete for these preferential adsorption sites inside the MOF material, reducing the total SO\textsubscript{2} capture. This journal is © The Royal Society of Chemistry.

Funding details

Universidad Nacional de Ingenierías
ICMAT
Consejo Nacional de Ciencia y Tecnología
Universidad Autónoma Metropolitana

The authors thank Dr. A. Tejeda-Cruz (powder X-ray; IIM-UNAM), CONACyT (1789), PAPIIT UNAM (IN101517), México for financial support. E. G.-Z. thanks CONACyT (236879), México for financial support. Thanks to U. Winnberg (ITAM) for scientific discussions. B. L.-R. thanks UAM for a postdoctoral fellowship. We thank the Laboratorio de Supercomputo y Visualización en Paralelo at the Universidad Autónoma Metropolitana (UAM) Iztapalapa for access to their computer facilities. We thank the Instituto de Investigación of the Facultad de Ciencias, UNI for the partial research grant.
1. Carbon Dioxide Levels Hit Record Peak in May
 National Oceanic and Atmospheric Administration (NOAA)
 https://research.noaa.gov/article/ArtMID/587/ArticleID/2461/Carbon-dioxide-levels-hit-record-peak-in-May

2. accessed November 2019

 World Meteorological Organization (WMO), 14
 https://library.wmo.int/doc_num.php?explnum_id=5455

4. accessed November 2019

5. Kumar, P., Kim, K.-H., Kwon, E.E., Szulejko, J.E.
 Metal-organic frameworks for the control and management of air quality: Advances and future direction
 http://pubs.rsc.org/en/journals/journalissues/ta
 doi: 10.1039/c5ta07068f
 View at Publisher

6. Kaskel, S.
 Wiley-VCH, Weinheim

7. Farrusseng, D.
 Metal-Organic Frameworks: Applications from Catalysis to Gas Storage
 ISBN: 978-352732870-3
 doi: 10.1002/9783527635856
 View at Publisher

9. Laskin, S., Kuschner, M., Drew, R.T.
 Studies in pulmonary carcinogenesis

Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide. Cited 1685 times. World Health Organisation (WHO) http://apps.who.int/iris/bitstream/10665/69477/1/WHO_SDE_PHE_OEH_06.02_eng.pdf

18. Rakotovao, V., Ammar, R., Miachon, S., Pera-Titus, M.
Influence of the mesoconfining solid on gas oversolubility in nanoliquids
http://www.elsevier.com.ezproxy.ulima.edu.pe/locate/cplonline
View at Publisher

19. Luzar, A., Bratko, D.
Gas solubility in hydrophobic confinement
doi: 10.1021/jp054545x
View at Publisher

20. Bratko, D., Luzar, A.
Attractive surface force in the presence of dissolved gas: A molecular approach
doi: 10.1021/la702328w
View at Publisher

Carbon dioxide capture in the presence of water vapour in InOF-1
http://pubs.rsc.org/en/journals/journal/pf
doi: 10.1039/c5qi00077g
View at Publisher

Separation of CO₂ from CH₄ and CO₂ capture in the presence of water vapour in NOTT-400
http://pubs.rsc.org/en/journals/journal/nj
doi: 10.1039/c4nj01933d
View at Publisher

Humidity-induced CO₂ capture enhancement in Mg-CUK-1
http://pubs.rsc.org/en/journals/journal/dt
doi: 10.1039/c8dt03365j
View at Publisher

24. González-Zamora, E., Ibarra, I.A.
CO₂ capture under humid conditions in metal-organic frameworks
http://pubs.rsc.org/en/journals/journal/rfc
doi: 10.1039/c6qm00301j
View at Publisher

High and energy-efficient reversible SO₂ uptake by a robust Sc(III)-based MOF

http://pubs.rsc.org/en/journals/journal/ta
doi: 10.1039/c9ta02585e

View at Publisher

26 Qian, J., Jiang, F., Yuan, D., Wu, M., Zhang, S., Zhang, L., Hong, M.

Highly selective carbon dioxide adsorption in a water-stable indium-organic framework material

doi: 10.1039/c2cc35068h

View at Publisher

Selective Adsorption of Sulfur Dioxide in a Robust Metal–Organic Framework Material (Open Access)

http://www3.interscience.wiley.com/journal/119030556/issue
doi: 10.1002/adma.201602338

View at Publisher

Confined methanol within InOF-1: CO₂ capture enhancement

http://www.rsc.org/Publishing/Journals
doi: 10.1039/c7dt02709e

View at Publisher

Adsorption of 1-Propanol in the Channel-Like InOF-1 Metal–Organic Framework and Its Influence on the CO₂ Capture Performances

http://pubs.acs.org/journal/jpcccc

doi: 10.1021/acs.jpcc.8b00215

View at Publisher

31 Sánchez-Bautista, J.E., Landeros-Rivera, B., Jurado-Vázquez, T., Martínez, A., González-Zamora, E., Balmaseda, J., Vargas, R., (...), Ibarra, I.A.

CO₂ capture enhancement for InOF-1: confinement of 2-propanol

http://pubs.rsc.org/en/journals/journal/dt
doi: 10.1039/c9dt00384c

View at Publisher
32 Sánchez-González, E., González-Zamora, E., Martínez-Otero, D., Jancik, V., Ibarra, I.A.

Bottleneck Effect of N,N-Dimethylformamide in InOF-1: Increasing CO₂ Capture in Porous Coordination Polymers

http://pubs.acs.org/journal/inocaj
doi: 10.1021/acs.inorgchem.7b00519
View at Publisher

Confined toluene within InOF-1: CO₂ capture enhancement (Open Access)

http://pubs.rsc.org/en/journals/journal/ra
doi: 10.1039/c9ra05991a
View at Publisher

34 Civalleri, B., Zicovich-Wilson, C.M., Valenzano, L., Ugliengo, P.

B3LYP augmented with an empirical dispersion term (B3LYP-D*) as applied to molecular crystals

http://pubs.rsc.org/en/journals/journal/cex
doi: 10.1039/b715018k
View at Publisher

35 Peintinger, M.F., Oliveira, D.V., Bredow, T.

Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations

doi: 10.1002/jcc.23153
View at Publisher

36 Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C.M., Civalleri, B., Casassa, S., Maschio, L., (...), Kirtman, B.

CRYSTAL14: A program for the ab initio investigation of crystalline solids

doi: 10.1002/qua.24658
View at Publisher

37 Bader, R.F.W.

Oxford University Press, Oxford

Grid-based algorithm to search critical points, in the electron density, accelerated by graphics processing units

doi: 10.1002/jcc.23752
View at Publisher
<table>
<thead>
<tr>
<th>Cite</th>
<th>Author(s)</th>
<th>Title and Details</th>
</tr>
</thead>
</table>

doi: 10.1016/S0009-2614(98)00036-0

Vargas, R.; Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 185, Col. Vicentina Iztapalapa Ciudad de México, Mexico; email: ruvf@xanum.uam.mx
© Copyright 2020 Elsevier B.V., All rights reserved.