Show simple item record

dc.contributor.authorAyma Quirita, Victor Hugo
dc.contributor.authorAyma, V. A.
dc.contributor.authorGutiérrez Cárdenas, Juan Manuel
dc.contributor.otherAyma Quirita, Víctor Hugo
dc.contributor.otherGutiérrez Cárdenas, Juan Manuel
dc.date.accessioned2020-09-18T19:25:02Z
dc.date.available2020-09-18T19:25:02Z
dc.date.issued2020
dc.identifier.citationAyma, V. H., Ayma, V. A., & Gutierrez, J. (2020). Dimensionality reduction via an orthogonal autoencoder approach for hyperspectral image classification. ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B3-2020, 357-362. https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-357-2020es_PE
dc.identifier.urihttps://hdl.handle.net/20.500.12724/11570
dc.description.abstractNowadays, the increasing amount of information provided by hyperspectral sensors requires optimal solutions to ease the subsequent analysis of the produced data. A common issue in this matter relates to the hyperspectral data representation for classification tasks. Existing approaches address the data representation problem by performing a dimensionality reduction over the original data. However, mining complementary features that reduce the redundancy from the multiple levels of hyperspectral images remains challenging. Thus, exploiting the representation power of neural networks based techniques becomes an attractive alternative in this matter. In this work, we propose a novel dimensionality reduction implementation for hyperspectral imaging based on autoencoders, ensuring the orthogonality among features to reduce the redundancy in hyperspectral data. The experiments conducted on the Pavia University, the Kennedy Space Center, and Botswana hyperspectral datasets evidence such representation power of our approach, leading to better classification performances compared to traditional hyperspectral dimensionality reduction algorithms.es_PE
dc.formatapplication/pdf
dc.language.isoeng
dc.publisherThe International Society for Photogrammetry and Remote Sensinges_PE
dc.rightsinfo:eu-repo/semantics/openAccess*
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.sourceRepositorio Institucional - Ulimaes_PE
dc.sourceUniversidad de Limaes_PE
dc.subjectImágenes hiperespectraleses_PE
dc.subjectReducción de dimensión (estadísticas)es_PE
dc.subjectRedes neuronales (Informática)es_PE
dc.subjectHyperspectral Imaginges_PE
dc.subjectDimension reduction (statistics)es_PE
dc.subjectNeural networks (Computer science)es_PE
dc.titleDimensionality reduction via an orthogonal autoencoder approach for hyperspectral image classificationes_PE
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.type.otherArtículo de conferencia en Scopus
ulima.areas.lineasdeinvestigacionProductividad y empleo / Innovación: tecnologías y productoses_PE
dc.publisher.countryDEes_PE
dc.subject.ocdehttp://purl.org/pe-repo/ocde/ford#2.02.04
dc.identifier.doihttps://doi.org/10.5194/isprs-archives-XLIII-B3-2020-357-2020
ulima.autor.afiliacionAyma Quirita, Víctor Hugo (University of Lima)es_PE
ulima.autor.afiliacionGutiérrez Cárdenas, Juan Manuel (University of Lima)es_PE
ulima.autor.carreraAyma Quirita, Víctor Hugo (Ingeniería de Sistemas)es_PE
ulima.autor.carreraGutiérrez Cárdenas, Juan Manuel (Ingeniería de Sistemas)es_PE
dc.identifier.isni121541816
dc.identifier.scopusid2-s2.0-85091155936
dc.identifier.eventInternational Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess