Mostrar el registro sencillo del ítem
Comparison of Classifiers Models for Prediction of Intimate Partner Violence
dc.contributor.author | Guerrero, Ashly | |
dc.contributor.author | Gutiérrez Cárdenas, Juan Manuel | |
dc.contributor.author | Romero Romero, Vilma Susana | |
dc.contributor.author | Ayma Quirita, Victor Hugo | |
dc.contributor.other | Guerrero, Ashly | |
dc.contributor.other | Gutiérrez Cárdenas, Juan Manuel | |
dc.contributor.other | Romero Romero, Vilma Susana | |
dc.contributor.other | Ayma Quirita, Víctor Hugo | |
dc.date.accessioned | 2020-12-01T16:17:47Z | |
dc.date.available | 2020-12-01T16:17:47Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Guerrero, A., Cárdenas, J. G., Romero, V. & Ayma, V. H. (2021) Comparison of Classifiers Models for Prediction of Intimate Partner Violence. In: Arai K., Kapoor S., Bhatia R. (eds) Proceedings of the Future Technologies Conference (FTC) 2020, (2), 469-488. Advances in Intelligent Systems and Computing. https://doi.org/10.1007/978-3-030-63089-8_30 | es_PE |
dc.identifier.issn | 2194-5357 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12724/11925 | |
dc.description.abstract | Intimate partner violence (IPV) is a problem that has been studied by different researchers to determine the factors that influence its occurrence, as well as to predict it. In Peru, 68.2% of women have been victims of violence, of which 31.7% were victims of physical aggression, 64.2% of psychological aggression, and 6.6% of sexual aggression. Therefore, in order to predict psychological, physical and sexual intimate partner violence in Peru, the database of denouncements registered in 2016 of the “Ministerio de la Mujer y Poblaciones Vulnerables” was used. This database is comprised of 70510 complaints and 236 variables concerning the characteristics of the victim and the aggressor. First of all, we used Chi-squared feature selection technique to find the most influential variables. Next, we applied the SMOTE and random under sampling techniques to balance the dataset. Then, we processed the balanced dataset using cross validation with 10 folds on Multinomial Logistic Regression, Random Forest, Naive Bayes and Support Vector Machines classifiers to predict the type of partner violence and compare their results. The results indicate that the Multinomial Logistic Regression and Support Vector Machine classifiers performed better on different scenarios with different feature subsets, whereas the Naïve Bayes classifier showed inferior. Finally, we observed that the classifiers improve their performance as the number of features increased. | es_PE |
dc.format | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer | es_PE |
dc.relation.ispartof | urn:issn:2194-5357 | |
dc.rights | info:eu-repo/semantics/restrictedAccess | * |
dc.source | Repositorio Institucional - Ulima | es_PE |
dc.source | Universidad de Lima | es_PE |
dc.subject | Prospectiva | es_PE |
dc.subject | Violencia de género | es_PE |
dc.subject | Forecasting | es_PE |
dc.subject | Gender-based violence | es_PE |
dc.title | Comparison of Classifiers Models for Prediction of Intimate Partner Violence | es_PE |
dc.type | info:eu-repo/semantics/conferenceObject | |
dc.type.other | Artículo de conferencia en Scopus | |
ulima.areas.lineasdeinvestigacion | Productividad y empleo / Innovación: tecnologías y productos | es_PE |
ulima.areas.lineasdeinvestigacion | Derechos, Estado y democracia / Género | es_PE |
dc.publisher.country | CH | es_PE |
dc.subject.ocde | http://purl.org/pe-repo/ocde/ford#2.02.04 | |
dc.identifier.doi | https://doi.org/10.1007/978-3-030-63089-8_30 | |
ulima.autor.afiliacion | Guerrero, Ashly (Universidad de Lima) (Scopus) | es_PE |
ulima.autor.afiliacion | Gutiérrez Cárdenas, Juan Manuel (Universidad de Lima) (Scopus) | es_PE |
ulima.autor.afiliacion | Romero Romero, Vilma Susana (Universidad de Lima) (Scopus) | es_PE |
ulima.autor.carrera | Guerrero, Ashly (No figura en la lista del año 2020) | es_PE |
ulima.autor.carrera | Gutiérrez Cárdenas, Juan Manuel (Ingeniería de Sistemas) | es_PE |
ulima.autor.carrera | Romero Romero, Vilma Susana (Ingeniería de Sistemas) | es_PE |
dc.identifier.scopusid | 2-s2.0-85096470447 | |
dc.identifier.event | Advances in Intelligent Systems and Computing |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |