Mostrar el registro sencillo del ítem

dc.contributor.authorLo Li, Aron
dc.contributor.authorAyma Quirita, Víctor Hugo
dc.contributor.authorGutiérrez Cárdenas, Juan Manuel
dc.contributor.otherAyma Quirita, Víctor Hugo
dc.contributor.otherGutiérrez Cárdenas, Juan Manuel
dc.date.accessioned2021-01-15T14:10:40Z
dc.date.available2021-01-15T14:10:40Z
dc.date.issued2020
dc.identifier.citationLo, A., Ayma, V.H. & Gutierrez-Cardenas, J. (2020). A Comparison of Authentication Methods via Keystroke Dynamics. In 2020 IEEE Engineering International Research Conference (EIRCON). https://doi.org/10.1109/EIRCON51178.2020.9253751es_PE
dc.identifier.urihttps://hdl.handle.net/20.500.12724/12278
dc.description.abstractAuthentication systems based on keystroke dynamics analyze the typical typing pattern of a user when interacting with an input device, such as the keyboard of a computer. In the literature, three major approaches on keystroke dynamics can be found: distance-based, statistical-based and machine learning-based approaches, which are often used to solve the problem. Nevertheless, in the literature there are several works which results are obtained from different comparison methodologies; this represents a great problem for future researchers who seek to improve or advance with prior works. Furthermore, by using proprietary databases, researchers do not provide a good overview of the overall performance of their methods, but rather an overview in a specific case: That represented by their database. In this investigation, we proposed to evaluate the performance of the most representative classifiers in two of the three most common approaches used in keystroke dynamics using the public Greyc dataset. The experimental results, reveal that machine-learning based approaches outperformed the distance-based techniques. Moreover, the Random Forest classifier, provided encouraging results.es_PE
dc.formatapplication/pdf
dc.language.isospa
dc.publisherIEEEes_PE
dc.rightsinfo:eu-repo/semantics/restrictedAccess*
dc.sourceRepositorio Institucional - Ulimaes_PE
dc.sourceUniversidad de Limaes_PE
dc.subjectSeguridad informáticaes_PE
dc.subjectBiometríaes_PE
dc.subjectComputer securityes_PE
dc.subjectBiometryes_PE
dc.subjectAprendizaje automáticoes_PE
dc.subjectMachine learninges_PE
dc.titleA Comparison of Authentication Methods via Keystroke Dynamicses_PE
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.type.otherArtículo de conferencia en Scopus
ulima.areas.lineasdeinvestigacionProductividad y empleo / Innovación: tecnologías y productoses_PE
dc.publisher.countryUSes_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.02.04
dc.identifier.doihttps://doi.org/10.1109/EIRCON51178.2020.9253751
dc.contributor.studentLo Li, Aron (Ingeniería de Sistemas)
ulima.cat9
ulima.autor.afiliacionAyma Quirita, Victor Hugo (Universidad de Lima)es_PE
ulima.autor.afiliacionGutiérrez Cárdenas, Juan Manuel (Universidad de Lima)es_PE
ulima.autor.carreraAyma Quirita, Victor Hugo (Ingeniería de Sistemas)es_PE
ulima.autor.carreraGutiérrez Cárdenas, Juan Manuel (Ingeniería de Sistemas)es_PE
dc.identifier.isni121541816
dc.identifier.scopusid2-s2.0-85097852729
dc.identifier.event2020 IEEE Engineering International Research Conference (EIRCON)


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem