Show simple item record

dc.contributor.authorMontenegro-Ayo, Renato-Martines_PE
dc.contributor.authorMorales-Gomero, Juan-Carloses_PE
dc.contributor.authorAlarcón-Cavero, Hugo-Arturoes_PE
dc.contributor.authorCorzo-Lucioni, Albertoes_PE
dc.contributor.authorWesterhoff, Paul K.es_PE
dc.contributor.authorGarcia-Segura, Sergies_PE
dc.contributor.otherMontenegro-Ayo, Renato-Martines_PE
dc.contributor.otherMorales-Gomero, Juan-Carloses_PE
dc.contributor.otherAlarcón-Cavero, Hugo-Arturoes_PE
dc.contributor.otherCorzo-Lucioni, Albertoes_PE
dc.date.accessioned2021-01-26T15:10:01Z
dc.date.available2021-01-26T15:10:01Z
dc.date.issued2021
dc.identifier.citationMontenegro-Ayo, R., Morales-Gomero, J.C., Alarcon, H., Corzo, A., Westerhoff, P.& Garcia-Segura, S. (2021). Photoelectrocatalytic degradation of 2,4-dichlorophenol in a TiO2 nanotube-coated disc flow reactor. Chemosphere, 268. https://doi.org/10.1016/j.chemosphere.2020.129320en_EN
dc.identifier.urihttps://hdl.handle.net/20.500.12724/12393
dc.descriptionIndexado en Scopuses_PE
dc.description.abstractPhotoelectrocatalytic (PEC) water treatment is a promising technology for organic pollution abatement. Much of the prior research focused on material discovery and optimization. However, challenges exist in scaling-up PEC processes and are associated with designing reactors with effective light irradiation on electrode surfaces and, simultaneously, efficient electrode configurations. We design and demonstrate key reactor design principles, which influence reaction mechanisms, for a reactor using a TiO2 nanotube-coated disc flow reactor. Degradation of organochlorinated 2,4-dichlorophenol was studied as representative carcinogenic micropollutant. The synergistic photoelectrocatalytic process showed 5-fold faster degradation kinetics than solely electrocatalytic treatment or a greater than 2-fold enhancement over photocatalysis alone. Applicability of photoelectrocatalytic treatment was demonstrated over a wide range of micropollutant concentrations with almost complete abatement even at concentrations up to 25 mg L-1 of 2,4-dichlorophenol. Mechanistically, the increase in applied current density efficiency for degradation of 2,4-dichlorophenol was due to stabilization of charge carriers and higher oxidants production rates in the PEC system. Carboxylic acids were identified as the main by-products formed from cleavage of the phenolic ring moieties in 2,4-dichlorophenol. However, very importantly we achieved dehalogenation photoelectrocatalysis with evidence of chlorine heteroatoms released as innocuous chloride anions. Overall, this research demonstrates the importance of PEC reactor design and how properly orientated TiO2 nanotube-coated disc flow reactors leverage both novel material designs and reactor architectures to achieve pollutant degradation.en_EN
dc.formatapplication/pdfes_PE
dc.language.isoeng
dc.publisherElsevieres_PE
dc.relation.ispartofurn:issn:0045-535
dc.rightsinfo:eu-repo/semantics/restrictedAccesses_PE
dc.sourceRepositorio Institucional - Ulimaes_PE
dc.sourceUniversidad de Limaes_PE
dc.subjectTratamiento del aguaes_PE
dc.subjectElectrocatálisises_PE
dc.subjectNanotecnologíaes_PE
dc.subjectWater treatmenten_EN
dc.subjectElectrocatalysises_PE
dc.subjectNanotechnologyen_EN
dc.subject.classificationIngeniería industrial / Diseño e innovaciónes_PE
dc.titlePhotoelectrocatalytic degradation of 2,4-dichlorophenol in a TiO2 nanotube-coated disc flow reactoren_EN
dc.typeinfo:eu-repo/semantics/articlees_PE
dc.type.otherArtículo en Scopuses_PE
dc.identifier.journalChemosphere
dc.publisher.countryNL
dc.description.peer-reviewRevisión por pareses_PE
dc.subject.ocdehttp://purl.org/pe-repo/ocde/ford#2.11.04es_PE
dc.identifier.doihttps://doi.org/10.1016/j.chemosphere.2020.129320


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record