dc.contributor.author | Chicchón Apaza, Miguel Ángel | |
dc.contributor.author | Huerta, Ronny | |
dc.contributor.other | Chicchón Apaza, Miguel Ángel | es_PE |
dc.date.accessioned | 2021-08-23T14:55:34Z | |
dc.date.available | 2021-08-23T14:55:34Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Chicchón M. & Huerta R. (2021). Semantic Segmentation Using Convolutional Neural Networks for Volume Estimation of Native Potatoes at High Speed. In: Lossio-Ventura J.A., Valverde-Rebaza J.C., Díaz E., Alatrista-Salas H. (eds.) Information Management and Big Data: Seventh Annual International Conference, SIMBig 2020, Lima, Perú, October 1–3, 2020, Proceedings, Communications in Computer and Information Science (vol.1410, pp. 236-249). Springer. https://doi.org/10.1007/978-3-030-76228-5_17 | es_PE |
dc.identifier.uri | https://hdl.handle.net/20.500.12724/13906 | |
dc.description | Indexado en Scopus | es_PE |
dc.description.abstract | Peru is one of the main producers of a wide variety of native potatoes in the world. Nevertheless, to achieve a competitive export of derived products is necessary to implement automation tasks in the production process. Nowadays, volume measurements of native potatoes are done manually, increasing production costs. To reduce these costs, a deep approach based on convolutional neural networks have been developed, tested, and evaluated, using a portable machine vision system to improve high-speed native potato volume estimations. The system was tested under different conditions and was able to detect volume with up to 90% of accuracy. | en_EN |
dc.format | application/pdf | es_PE |
dc.language.iso | eng | es_PE |
dc.publisher | Springer | es_PE |
dc.relation.ispartof | urn:issn:1865-0929 | |
dc.rights | info:eu-repo/semantics/restrictedAccess | es_PE |
dc.source | Repositorio Institucional - Ulima | es_PE |
dc.source | Universidad de Lima | es_PE |
dc.subject | Papas (tubérculos) | es_PE |
dc.subject | Producción eficiente | es_PE |
dc.subject | Industria alimentaria | es_PE |
dc.subject | Potatoes | en_EN |
dc.subject | Lean manufacturing | en_EN |
dc.subject | Food industry and trade | en_EN |
dc.subject.classification | Ingeniería industrial / Producción | es_PE |
dc.title | Semantic Segmentation Using Convolutional Neural Networks for Volume Estimation of Native Potatoes at High Speed | en_EN |
dc.type | info:eu-repo/semantics/article | es_PE |
dc.type.other | Artículo de conferencia en Scopus | |
ulima.areas.lineasdeinvestigacion | Productividad y empleo / Innovación: tecnologías y productos | es_PE |
dc.identifier.journal | Communications in Computer and Information Science | |
dc.publisher.country | DE | es_PE |
dc.description.peer-review | Revisión por pares | es_PE |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#1.02.00 | es_PE |
dc.identifier.doi | https://doi.org/10.1007/978-3-030-76228-5_17 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_PE |