Show simple item record

dc.contributor.authorVasquez Gonzaga, Hillary Dayanna
dc.contributor.authorGutiérrez Cárdenas, Juan Manuel
dc.contributor.otherGutiérrez Cárdenas, Juan Manuel
dc.date.accessioned2023-02-06T17:19:47Z
dc.date.available2023-02-06T17:19:47Z
dc.date.issued2021
dc.identifier.citationVasquez-Gonzaga, H. & Gutiérrez-Cárdenas, J. (2021). Comparison of Supervised Learning Models for the Prediction of Coronary Artery Disease. In 2021 5th International Conference on Artificial Intelligence and Virtual Reality (AIVR) (pp. 98-103). https://doi.org/10.1145/3480433.3480451es_PE
dc.identifier.urihttps://hdl.handle.net/20.500.12724/17543
dc.description.abstractCardiovascular diseases and Coronary Artery Disease (CAD) are the leading causes of mortality among people of different ages and conditions. The use of different and not so invasive biomarkers to detect these types of diseases joined with Machine Learning techniques seems promising for early detection of these illnesses. In the present work, we have used the Sani Z-Alizadeh dataset, which comprises a set of different medical features extracted with not invasive methods and used with different machine learning models. The comparisons performed showed that the best results were using a complete set and a subset of features as input for the Random Forest and XGBoost algorithms. Considering the results obtained, we believe that using a complete set of features gives insights that the features should also be analyzed by considering the medical advances and findings of how these markers influence a CAD disease's presence.es_PE
dc.formatapplication/pdf
dc.language.isospa
dc.publisherAssociation for Computing Machineryes_PE
dc.rightsinfo:eu-repo/semantics/openAccess*
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.sourceRepositorio Institucional - Ulimaes_PE
dc.sourceUniversidad de Limaes_PE
dc.subjectEnfermedades cardiovasculareses_PE
dc.subjectEnfermedades coronariases_PE
dc.subjectBiosensoreses_PE
dc.subjectAprendizaje automáticoes_PE
dc.subjectCardiovascular diseaseses_PE
dc.subjectCoronary diseaseses_PE
dc.subjectBiosensorses_PE
dc.subjectMachine learninges_PE
dc.titleComparison of Supervised Learning Models for the Prediction of Coronary Artery Diseasees_PE
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.publisher.countryUSes_PE
dc.type.otherArtículo de conferencia en Scopus
ulima.autor.carreraIngeniería de Sistemases_PE
dc.contributor.studentVasquez Gonzaga, Hillary Dayanna (Ingeniería de Sistemas)
ulima.autor.afiliacionUniversidad de Limaes_PE
dc.identifier.eventACM International Conference Proceeding Series
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.02.04
dc.identifier.doihttps://doi.org/10.1145/3480433.3480451
ulima.cat9
dc.identifier.scopusid2-s2.0-85119206955


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess