Mostrar el registro sencillo del ítem

dc.contributor.authorChicchón Apaza, Miguel Ángel
dc.contributor.authorBedón Monzón, Héctor Manuel
dc.contributor.otherChicchón Apaza, Miguel Ángel
dc.contributor.otherBedón Monzón, Héctor Manuel
dc.date.accessioned2023-02-16T14:42:35Z
dc.date.available2023-02-16T14:42:35Z
dc.date.issued2022
dc.identifier.citationChicchon, M. & Bedon, H. (2022). Semantic Segmentation of Underwater Environments Using DeepLabv3+ and Transfer Learning. En Y.-D Zhang, T. Senjyu, C. So-In & A. Joshi (Eds.), Smart Trends in Computing and Communications: Fifth International Conference, SmartCom 2021, Virtual, Online, April 15-16, 2021, Proceedings, Lecture Notes in Networks and Systems (vol. 286, pp. 301-309). Springer. https://doi.org/10.1007/978-981-16-4016-2_29es_PE
dc.identifier.issn2367-3370
dc.identifier.urihttps://hdl.handle.net/20.500.12724/17607
dc.description.abstractThe semantic segmentation approach is essential in automated scene analysis, but its application in underwater environments is still limited. Datasets generally have insufficient labeled data, unbalanced data classes, and different lighting conditions, making it difficult to obtain optimal results. Currently, deep convolutional neural networks allow very good results in machine vision tasks, and one of the network architectures with good performance in semantic segmentation is DeepLabv3 +. This paper evaluates the performance of DeepLabv3 + and transfer learning based on pre-trained backend networks in ImageNet to study underwater scenes. The experimentation is carried out on a dataset available on the Internet with labels of eight classes. Experimental results show that DeepLabv3 + and transfer learning are effective for semantic segmentation of multiple underwater scene objects with insufficient tagged data and unbalanced classes.en_EN
dc.formatapplication/html
dc.language.isoeng
dc.publisherSpringeres_PE
dc.relation.ispartofurn:issn: 23673370
dc.relation.ispartofurn:isbn:978-981164015-5
dc.rightsinfo:eu-repo/semantics/restrictedAccess*
dc.sourceRepositorio Institucional - Ulimaes_PE
dc.sourceUniversidad de Limaes_PE
dc.subjectVisión por computadoraes_PE
dc.subjectAprendizaje profundoes_PE
dc.subjectComputer visiones_PE
dc.subjectDeep learninges_PE
dc.titleSemantic Segmentation of Underwater Environments Using DeepLabv3+ and Transfer Learningen_EN
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.type.otherArtículo de conferencia en Scopus
ulima.areas.lineasdeinvestigacionProductividad y empleo / Innovación: tecnologías y productoses_PE
dc.publisher.countrySGes_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.11.04
dc.identifier.doihttps://doi.org/10.1007/978-981-16-4016-2_29
ulima.cat9
ulima.autor.afiliacionChicchón Apaza, Miguel Ángel (Exponential Technology Group (GITX-ULIMA), Institute of Scientific Research (IDIC), Universidad de Lima) (Scopus)es_PE
ulima.autor.afiliacionBedón Monzón, Héctor Manuel (Exponential Technology Group (GITX-ULIMA), Institute of Scientific Research (IDIC), Universidad de Lima) (Scopus)es_PE
ulima.autor.carreraChicchón Apaza, Miguel Ángel (No figura en la lista del año 2021)es_PE
ulima.autor.carreraBedón Monzón, Héctor Manuel (Ingeniería Industrial)es_PE
dc.identifier.scopusid2-s2.0-85118997690
dc.identifier.eventLecture Notes in Networks and Systems


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem