Mostrar el registro sencillo del ítem

dc.contributor.authorAlcántara Francia, Olga Alejandra
dc.contributor.authorNunez-del-Prado, Miguel
dc.contributor.authorAlatrista-Salas, Hugo
dc.contributor.otherAlcántara Francia, Olga Alejandra
dc.date.accessioned2023-02-13T17:37:58Z
dc.date.available2023-02-13T17:37:58Z
dc.date.issued2022
dc.identifier.citationAlcántara Francia, O.A., Nunez-del-Prado, M. & Alatrista-Salas, H. (2022). Survey of Text Mining Techniques Applied to Judicial Decisions Prediction. Applied Sciences, 12(20). https://doi.org/10.3390/ app122010200es_PE
dc.identifier.issn2076-3417
dc.identifier.urihttps://hdl.handle.net/20.500.12724/17618
dc.description.abstractThis paper reviews the most recent literature on experiments with different Machine Learning, Deep Learning and Natural Language Processing techniques applied to predict judicial and administrative decisions. Among the most outstanding findings, we have that the most used data mining techniques are Support Vector Machine (SVM), K Nearest Neighbours (K-NN) and Random Forest (RF), and in terms of the most used deep learning techniques, we found Long-Term Memory (LSTM) and transformers such as BERT. An important finding in the papers reviewed was that the use of machine learning techniques has prevailed over those of deep learning. Regarding the place of origin of the research carried out, we found that 64% of the works belong to studies carried out in English-speaking countries, 8% in Portuguese and 28% in other languages (such as German, Chinese, Turkish, Spanish, etc.). Very few works of this type have been carried out in Spanish-speaking countries. The classification criteria of the works have been based, on the one hand, on the identification of the classifiers used to predict situations (or events with legal interference) or judicial decisions and, on the other hand, on the application of classifiers to the phenomena regulated by the different branches of law: criminal, constitutional, human rights, administrative, intellectual property, family law, tax law and others. The corpus size analyzed in the reviewed works reached 100,000 documents in 2020. Finally, another important finding lies in the accuracy of these predictive techniques, reaching predictions of over 60% in different branches of law.en_EN
dc.formatapplication/html
dc.language.isospa
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)
dc.relation.ispartofurn:issn: 2076-3417
dc.rightsinfo:eu-repo/semantics/openAccess*
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.sourceRepositorio Institucional - Ulima
dc.sourceUniversidad de Lima
dc.subjectText data miningen_EN
dc.subjectJudicial opinionsen_EN
dc.subjectJudicial processen_EN
dc.subjectAlgorithmsen_EN
dc.subjectMachine learningen_EN
dc.subjectDeep learning (Machine learning)en_EN
dc.subjectNatural language processing (Computer science)en_EN
dc.titleSurvey of text mining techniques applied to Judicial decisions predictiones_PE
dc.typeinfo:eu-repo/semantics/article
dc.identifier.journalApplied Sciences
dc.publisher.countryCH
dc.type.otherArtículo en Scopus
dc.identifier.isni0000000121541816
ulima.autor.carreraDerecho
ulima.autor.afiliacionFaculty of Law, Universidad de Lima
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#5.05.01
dc.identifier.doihttps://doi.org/10.3390/app122010200
ulima.catOI
dc.identifier.scopusid2-s2.0-85140488281


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess