Optimal stability results for laminated beams with Kelvin-Voigt damping and delay
Resumen
We use semigroup theory to prove the well-posedness and get exponential and polynomial stability estimates for a delayed laminated beam system with Kelvin-Voigt damping. The Kelvin-Voigt damping only acts either on the transverse displacement or the effective rotational angle. The presence and absence of structural damping are also analyzed in both cases. The stability results follow using Gearhart-Prüss-Huang's theorem (exponential stability) and Borichev-Tomilov's theorem (polynomial stability). We also get optimal decay rates in the case of polynomial stability.
Cómo citar
Cabanillas Zannini, V., Potenciano-Machado, L. & Quispe Méndez, T. (2022). Optimal stability results for laminated beams with Kelvin-Voigt damping and delay. Journal of Mathematical Analysis and Applications, 514(2). https://doi.org/10.1016/j.jmaa.2022.126328Editor
Elsevier Inc.Categoría / Subcategoría
PendienteTemas
Revista
Journal of Mathematical Analysis and ApplicationsISSN
0022-247XColeccion(es)
- Estudios Generales [122]