Mostrar el registro sencillo del ítem

dc.contributor.authorAsencios Casimiro, Rodrigo Andre
dc.contributor.authorAsencios, Christian
dc.contributor.authorRamos Ponce, Oscar Efrain
dc.contributor.otherRamos Ponce, Oscar Efrain
dc.date.accessioned2023-03-21T13:48:36Z
dc.date.available2023-03-21T13:48:36Z
dc.date.issued2023
dc.identifier.citationAsencios, R., Asencios, C. & Gutiérrez-Cárdenas, J. (2023). Profit scoring for credit unions using the multilayer perceptron, XGBoost and TabNet algorithms: Evidence from Peru. Communications in Computer and Information Science, 213. https://doi.org/10.1016/j.eswa.2022.119201es_PE
dc.identifier.issn0957-4174
dc.identifier.urihttps://hdl.handle.net/20.500.12724/17928
dc.description.abstractCredit unions are growing microfinance institutions that base their lending decisions on the judgment of their credit analysts. Therefore, the purpose of this paper is to design 6 profit scoring models, capable of predicting the Internal Rate of Return (IRR) of credit applications, using the multilayer perceptron, XGBoost and TabNet algorithms and thus serve as a support tool for the credit analyst. For this purpose, the least correlated and most independent features were selected from the dataset coming from a Peruvian credit union and composed of 36 402 observations. Then, the hyperparameters of all algorithms were tuned. Finally, the profit scoring models that considered only the selected features were compared to which considered all features. As results, it was obtained that the most significant features that determine the IRR of a loan are the effective monthly interest rate and the member’s maximum or average days delinquent. The results obtained from the performance evaluation of the profit scoring models suggested the XGBoost as the best algorithm. In addition, the model that used the XGBoost algorithm and considered all the features had the best performance.en_EN
dc.formatapplication/html
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofurn:issn: 0957-4174
dc.rightsinfo:eu-repo/semantics/restrictedAccess*
dc.sourceRepositorio Institucional Ulima
dc.sourceUniversidad de Lima
dc.subjectCredit unionsen_EN
dc.subjectCredit analysisen_EN
dc.subjectAlgorithmsen_EN
dc.subjectCooperativas de créditoes_PE
dc.subjectAnálisis del créditoes_PE
dc.subjectAlgoritmoses_PE
dc.subjectPerúes_PE
dc.subject.classificationPendientees_PE
dc.titleProfit scoring for credit unions using the multilayer perceptron, XGBoost and TabNet algorithms: Evidence from Peruen_EN
dc.typeinfo:eu-repo/semantics/article
dc.type.otherArtículo en Scopus
ulima.areas.lineasdeinvestigacionDesarrollo empresarial / Finanzas y proyectos de inversiónes_PE
dc.identifier.journalExpert Systems with Applications
dc.publisher.countryGB
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.02.04
dc.identifier.doihttps://doi.org/10.1016/j.eswa.2022.119201
ulima.lineadeinvestigacionDesarrollo empresarial / Finanzas y proyectos de inversiónes_PE
dc.contributor.studentAsencios Casimiro, Rodrigo Andre (Ingeniería de Sistemas)
ulima.cat9
ulima.autor.afiliacionDepartment of Engineering and Architecture, Universidad de Lima
ulima.autor.carreraIngeniería de Sistemas
dc.identifier.isni0000000121541816
dc.identifier.scopusid2-s2.0-85141915332


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem