Mostrar el registro sencillo del ítem

dc.contributor.authorGarcia Arismendiz, Joaquin Antonio
dc.contributor.authorHuertas Zúñiga, Sandra Larissa
dc.contributor.authorLizárraga Portugal, Carlos Augusto
dc.contributor.authorQuiroz Flores, Juan Carlos
dc.contributor.authorGarcía López, Yván Jesús
dc.contributor.otherLizárraga Portugal, Carlos Augusto
dc.contributor.otherQuiroz Flores, Juan Carlos
dc.contributor.otherGarcía López, Yván Jesús
dc.date.accessioned2023-03-28T16:51:56Z
dc.date.available2023-03-28T16:51:56Z
dc.date.issued2023
dc.identifier.citationGarcia-Arismendiz, J., Huertas-Zúñiga, S., Lizárraga-Portugal, C. A., Quiroz-Flores, J. C. & García-López, Y. J. (2023). Improving Demand Forecasting by Implementing Machine Learning in Poultry Production Company. International Journal of Engineering Trends and Technology, 71(2), 39-45. https://doi.org/10.14445/22315381/IJETT-V71I2P205es_PE
dc.identifier.issn2349-0918
dc.identifier.urihttps://hdl.handle.net/20.500.12724/17993
dc.description.abstractThe use of manual methods to forecast demand in perishable food companies is generally subject to the variability of internal and external factors in the company, causing excess inventories and significant monetary losses, so it is relevant to carry out this research with the objective of to demonstrate that by implementing Machine Learning it is possible to improve the accuracy of the demand forecast. A case study in a company in the poultry sector in Peru, forecasting the last quarter of 2022, based on a real sales database and applying the time series method, comparing the results of the Machine Learning model, and obtaining as a result in a model with high Forecast Accuracy (FA) of 97.56% and a high Forecast Bias (FB) of 2.44%. The research is an important contribution to knowledge, demonstrating that Machine Learning is an ideal tool to project the demand for perishable food products, ideal for its application in various fields, such as loss reduction control, preventive maintenance of machines and control of supplies such as water and energy, among others.en_EN
dc.formatapplication/html
dc.language.isoeng
dc.publisherSeventh Sense Research Group
dc.relation.ispartofurn:issn: 2349-0918
dc.rightsinfo:eu-repo/semantics/openAccess*
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.sourceRepositorio Institucional - Ulima
dc.sourceUniversidad de Lima
dc.subjectSales forecastingen_EN
dc.subjectPoultry industryen_EN
dc.subjectMachine learningen_EN
dc.subjectTime-series analysisen_EN
dc.subjectSupply chain managementen_EN
dc.subjectData miningen_EN
dc.subjectFood industry and tradeen_EN
dc.subjectPerishable goodsen_EN
dc.subjectInventory controlen_EN
dc.subjectSupply and demanden_EN
dc.titleImproving Demand Forecasting by Implementing Machine Learning in Poultry Production Companyen_EN
dc.typeinfo:eu-repo/semantics/article
dc.identifier.journalInternational Journal of Engineering Trends and Technology
dc.publisher.countryIN
dc.type.otherArtículo en Scopus
dc.identifier.isni0000000121541816
ulima.autor.carreraLizárraga Portugal, Carlos Augusto (Ingeniería Industrial)
ulima.autor.carreraQuiroz Flores, Juan Carlos (Ingeniería Industrial)
ulima.autor.carreraGarcía López, Yván Jesús (Ingeniería Industrial)
dc.contributor.studentHuertas Zúñiga, Sandra Larissa (Ingeniería Industrial)
dc.contributor.studentGarcia Arismendiz, Joaquin Antonio (Ingeniería Industrial)
ulima.autor.afiliacionLizárraga Portugal, Carlos Augusto (Facultad de Ingeniería y Arquitectura, Universidad de Lima)
ulima.autor.afiliacionQuiroz Flores, Juan Carlos (Facultad de Ingeniería y Arquitectura, Universidad de Lima)
ulima.autor.afiliacionGarcía López, Yván Jesús (Facultad de Ingeniería y Arquitectura, Universidad de Lima)
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.11.04
dc.identifier.doihttps://doi.org/10.14445/22315381/IJETT-V71I2P205
ulima.catOI
dc.identifier.scopusid2-s2.0-85149152578


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess