Show simple item record

dc.contributor.advisorGarcía López, Yván Jesús
dc.contributor.authorCabrera Feijoo, Gianella Valeria
dc.contributor.authorGermana Valverde, Jimena Mariana
dc.date.accessioned2023-07-03T15:23:28Z
dc.date.available2023-07-03T15:23:28Z
dc.date.issued2023
dc.identifier.citationCabrera Feijoo, G. V. & Germana Valverde, J. M. (2023). An explainable machine learning model to optimize demand forecasting in Company DEOS [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/18455es_PE
dc.identifier.urihttps://hdl.handle.net/20.500.12724/18455
dc.description.abstractNowadays, having an accurate demand forecast is extremely important as it allows the company to manage resources in an optimal way and thus achieve greater productivity. There is a large demand for accurate forecasting, and utilizing artificial intelligence can help companies gain a better understanding of their market. In this research presentation, Machine Learning (ML) is used to optimize demand forecasting. The data collected was trained and due to the available data rate, the Cross-Validation technique was used to avoid overfitting. Using time-series, it will be possible to predict future sales for the first trimester of 2021. Finally, the impact of the ML tool on the deviation of the company's demand forecast was evaluated using indicators of accuracy (forecast accuracy) and bias (forecast bias).es_PE
dc.formatapplication/pdf
dc.language.isoeng
dc.publisherUniversidad de Lima
dc.rightsinfo:eu-repo/semantics/openAccess*
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.sourceRepositorio Institucional - Ulima
dc.sourceUniversidad de Lima
dc.subjectAprendizaje automáticoes_PE
dc.subjectPronósticos económicoses_PE
dc.subjectMachine learninges_PE
dc.subjectEconomic forecastinges_PE
dc.titleAn explainable machine learning model to optimize demand forecasting in Company DEOSes_PE
dc.typeinfo:eu-repo/semantics/bachelorThesis
thesis.degree.levelTítulo Profesional
thesis.degree.disciplineIngeniería Industriales_PE
thesis.degree.grantorUniversidad de Lima. Facultad de Ingeniería y Arquitectura
dc.publisher.countryPE
dc.type.otherTesis
thesis.degree.nameIngeniero Industrial
renati.advisor.orcidhttps://orcid.org/0000-0001-9577-4188
renati.discipline722026
dc.identifier.isni121541816
renati.author.dni74124685
renati.author.dni70452360
renati.levelhttps://purl.org/pe-repo/renati/level#tituloProfesional*
renati.advisor.dni6074453
renati.jurorFlores Pérez, Alberto Enrique
renati.jurorQuiroz Flores, Juan Carlos
renati.jurorGarcía López, Yván Jesús
renati.typehttps://purl.org/pe-repo/renati/type#tesis*
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.11.04
ulima.catOI


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess