Mostrar el registro sencillo del ítem

dc.contributor.authorParedes Larroca, Fabricio Humberto
dc.contributor.authorQuino Favero, Javier
dc.contributor.authorRojas Villanueva, Uwe
dc.contributor.authorSaettone Olschewski, Erich Arturo
dc.contributor.otherParedes Larroca, Fabricio Humberto
dc.contributor.otherQuino Favero, Javier
dc.contributor.otherRojas Villanueva, Uwe
dc.contributor.otherSaettone Olschewski, Erich Arturo
dc.date.accessioned2023-07-10T14:58:27Z
dc.date.available2023-07-10T14:58:27Z
dc.date.issued2023
dc.identifier.citationParedes Larroca, F., Quino-Favero, J., Rojas Villanueva, U. & Saettone Olschewski, E. (2023). Acquisition and analysis of floc images by machine learning technique to improve the turbidity removal process. Desalination and Water Treatment, 292, 60-68. https://doi.org/10.5004/dwt.2023.29497es_PE
dc.identifier.issn1944-3994
dc.identifier.urihttps://hdl.handle.net/20.500.12724/18491
dc.description.abstractThis article reports on the implementation and use of a floc image acquisition and analysis system in a pilot water treatment plant to remove kaolin turbidity with a coagulant and flocculant. The system is based on the Hausdorff dimension (df) of the images and is used to obtain information about the image texture and to ensure that the flocs could be removed by the filtration system, and to use df values for corrections of the dosage of both chemical agents via signals with pulse width modulation that feed and control dosage pumps during treatment, ensuring a continuous adjustment for changing water conditions, which allows for a close on-site process control and a rapid response to changes in the quality of the effluent.en_EN
dc.formatapplication/html
dc.language.isoeng
dc.publisherDesalination Publications
dc.relation.ispartofurn:issn: 1944-3994
dc.rightsinfo:eu-repo/semantics/restrictedAccess*
dc.sourceRepositorio Institucional Ulima
dc.sourceUniversidad de Lima
dc.subjectWater treatmenten_EN
dc.subjectMachine learningen_EN
dc.subjectTratamiento del aguaes_PE
dc.subjectGráficos por computadoraes_PE
dc.subjectAprendizaje automáticoes_PE
dc.subject.classificationPendientees_PE
dc.titleAcquisition and analysis of floc images by machine learning technique to improve the turbidity removal processen_EN
dc.typeinfo:eu-repo/semantics/article
dc.type.otherArtículo en Scopus
ulima.areas.lineasdeinvestigacionCalidad de vida y bienestar / Saneamientoes_PE
dc.identifier.journalDesalination and Water Treatment
dc.publisher.countryUS
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.11.04
dc.identifier.doihttps://doi.org/10.5004/dwt.2023.29497
ulima.cat9
ulima.autor.afiliacionParedes Larroca, Fabricio Humberto (Universidad de Lima, Instituto de Investigación Científica, Grupo de Investigación en Soluciones Tecnológicas para el Medio Ambiente) (Scopus)
ulima.autor.afiliacionQuino Favero, Javier (Universidad de Lima, Instituto de Investigación Científica, Grupo de Investigación en Soluciones Tecnológicas para el Medio Ambiente) (Scopus)
ulima.autor.afiliacionRojas Villanueva, Uwe (Universidad de Lima, Carrera de Ingeniería Industrial) (Scopus)
ulima.autor.afiliacionSaettone Olschewski, Erich Arturo (Universidad de Lima, Instituto de Investigación Científica, Grupo de Investigación en Soluciones Tecnológicas para el Medio Ambiente) (Scopus)
ulima.autor.carreraParedes Larroca, Fabricio Humberto (Ingeniería Industrial)
ulima.autor.carreraQuino Favero, Javier (Ingeniería Industrial)
ulima.autor.carreraRojas Villanueva, Uwe (Ingeniería Industrial)
ulima.autor.carreraSaettone Olschewski, Erich Arturo (Ingeniería Industrial)
dc.identifier.isni0000000121541816
dc.identifier.scopusid2-s2.0-85162161256


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem