Mostrar el registro sencillo del ítem

dc.contributor.authorChumbe Llimpe, Rossy Jackeline
dc.contributor.authorSilva Paucar, Stefany Dennis
dc.contributor.authorGarcía López, Yván Jesús
dc.contributor.otherGarcía López, Yván Jesús
dc.date.accessioned2023-08-31T16:23:35Z
dc.date.available2023-08-31T16:23:35Z
dc.date.issued2023
dc.identifier.citationChumbe-Llimpe, R. J., Silva-Paucar, S. D. & García-López, Y. J. (2023). Comparison of the machine learning and AquaCrop models for quinoa crops. Research in Agricultural Engineering, 69(2), 65-75. https://doi.org/10.17221/86/2021-RAEes_PE
dc.identifier.issn1212-9151
dc.identifier.urihttps://hdl.handle.net/20.500.12724/18812
dc.description.abstractOne of the main causes of having low crop efficiency in Peru is the poor management of water resources; which is why the main objective of this article is to estimate the amount of irrigation water required in quinoa crops through a comparison between the machine learning and AquaCrop models. For the development of this study, meteorological data from the province of Jauja and descriptive data of quinoa crops were processed and a simulation period was established from June to December 2020. From the simulation carried out, it was determined that the best model to predict the required irrigation water is the Adaptive Boosting (AdaBoost) model in which it was observed that the mean and standard deviation of the AdaBoost models (mean = 19.681 and SD = 4.665) behave similarly to AquaCrop (mean = 19.838 and SD = 5.04). In addition, the result of ANOVA was that the AdaBoost model has the best P-value indicator with a value of 0.962 and a smaller margin of error in relation to the mean absolute error (MAE) indicator with a value of 0.629. Likewise, it was identified that, for the simulation period of 190 days, 472.35 mm of water was required to carry out the irrigation process in red quinoa crops.en_EN
dc.formatapplication/html
dc.language.isoeng
dc.publisherCzech Academy of Agricultural Sciences
dc.relation.ispartofurn:issn: 1212-9151
dc.rightsinfo:eu-repo/semantics/openAccess*
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.sourceRepositorio Institucional Ulima
dc.sourceUniversidad de Lima
dc.subjectPendientees_PE
dc.subject.classificationPendientees_PE
dc.titleComparison of the machine learning and AquaCrop models for quinoa cropsen_EN
dc.typeinfo:eu-repo/semantics/article
dc.type.otherArtículo en Scopus
dc.identifier.journalResearch in Agricultural Engineering
dc.publisher.countryCZ
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.11.04
dc.identifier.doihttps://doi.org/10.17221/86/2021-RAE
dc.contributor.studentChumbe Llimpe, Rossy Jackeline (Ingeniería Industrial)
dc.contributor.studentSilva Paucar, Stefany Dennis (Ingeniería Industrial)
ulima.catOI
ulima.autor.afiliacionGarcía-López, Yván Jesús (Department Industrial Engineering, Faculty of Engineering, University of Lima)
ulima.autor.carreraIngeniería Industrial
dc.identifier.isni0000000121541816
dc.identifier.scopusid2-s2.0-85164602834


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess