Mostrar el registro sencillo del ítem

dc.contributor.authorDel Savio, Alexandre Almeida
dc.contributor.authorCárdenas Salas, Daniel Enrique
dc.contributor.authorLuna Torres, Ana Felícita
dc.contributor.authorVergara Olivera, Mónica Alejandra
dc.contributor.authorUrday Ibarra, Gianella Tania
dc.contributor.otherDel Savio, Alexandre Almeida
dc.contributor.otherCárdenas Salas, Daniel Enrique
dc.contributor.otherLuna Torres, Ana Felícita
dc.contributor.otherVergara Olivera, Mónica Alejandra
dc.date.accessioned2023-10-09T17:16:57Z
dc.date.available2023-10-09T17:16:57Z
dc.date.issued2023
dc.identifier.citationDel Savio, A. A., Luna Torres, A., Cárdenas Salas, D., Vergara Olivera, M. A. & Urday Ibarra, G. T. (2023). Detection and Evaluation of Construction Cracks through Image Analysis Using Computer Vision. Applied Sciences, 13(17). https://doi.org/10.3390/app13179662es_PE
dc.identifier.issn2076-3417
dc.identifier.urihttps://hdl.handle.net/20.500.12724/19064
dc.description.abstractThe introduction of artificial intelligence methods and techniques in the construction industry has fostered innovation and constant improvement in the automation of monitoring and control processes at construction sites, although there are areas where more studies still need to be conducted. This paper proposes a method to determine the criticality of cracks in concrete samples. The proposed method uses a previously trained YOLOv4 neural network to identify concrete cracks. Then, the region of interest, determined by the bounding box resulting from the neural network model classification, is extracted. Finally, the extracted image is converted to negative grayscale to quantify the number of white pixels above a certain threshold, automatically allowing the system to characterize the fracture’s extent and criticality. The classification module reached a veracity between 98.36% and 99.75% when identifying five concrete crack types of failures in 1132 images. A qualitative analysis of the results obtained from the characterization module shows a promising alternative to evaluate the criticality of concrete cracks.en_EN
dc.formatapplication/html
dc.language.isoeng
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)
dc.relation.ispartofurn:issn: 2076-3417
dc.rightsinfo:eu-repo/semantics/openAccess*
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.sourceRepositorio Institucional Ulima
dc.sourceUniversidad de Lima
dc.subjectPendientees_PE
dc.subject.classificationPendientees_PE
dc.titleDetection and Evaluation of Construction Cracks through Image Analysis Using Computer Visionen_EN
dc.typeinfo:eu-repo/semantics/article
dc.type.otherArtículo en Scopus
dc.identifier.journalApplied Sciences
dc.publisher.countryCH
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.01.00
dc.identifier.doihttps://doi.org/10.3390/app13179662
dc.contributor.studentUrday Ibarra, Gianella Tania (Ingeniería de Sistemas)
ulima.catOI
ulima.autor.afiliacionDel Savio, Alexandre Almeida (Scientific Research Institute (IDIC), Universidad de Lima)
ulima.autor.afiliacionCárdenas Salas, Daniel Enrique (Scientific Research Institute (IDIC), Universidad de Lima)
ulima.autor.afiliacionLuna Torres, Ana Felícita (Scientific Research Institute (IDIC), Universidad de Lima)
ulima.autor.afiliacionVergara Olivera, Monica Alejandra (Scientific Research Institute (IDIC), Universidad de Lima)
ulima.autor.carreraDel Savio, Alexandre Almeida (Ingeniería Civil)
ulima.autor.carreraCárdenas Salas, Daniel Enrique (Ingeniería de Sistemas)
ulima.autor.carreraLuna Torres, Ana Felícita (Ingeniería Civil)
ulima.autor.carreraVergara Olivera, Mónica Alejandra (Ingeniería Civil)
dc.identifier.isni0000000121541816
dc.identifier.scopusid2-s2.0-85170364973


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess