Show simple item record

dc.contributor.authorCarbajal Vásquez, Keysi Alejandra
dc.contributor.authorPiscoya Alvites, Renato Alejandro
dc.contributor.authorQuiroz Flores, Juan Carlos
dc.contributor.authorGarcía López, Yván Jesús
dc.contributor.authorNallusamy, S.
dc.contributor.otherQuiroz Flores, Juan Carlos
dc.contributor.otherGarcía López, Yván Jesús
dc.date.accessioned2023-12-07T17:39:42Z
dc.date.available2023-12-07T17:39:42Z
dc.date.issued2023
dc.identifier.citationCarbajal-Vásquez, K. A., Piscoya-Alvites, R. A., Quiroz-Flores, J. C., García-Lopez, Y, Nallusamy, S. (2023). Minimization of Smashed Products in Sustenance Industries by Lean and Machine Learning Tools. SSRG International Journal of Mechanical Engineering, 10(10), 12-26. https://doi.org/10.14445/23488360/IJME-V10I10P102es_PE
dc.identifier.issn2348-8360
dc.identifier.urihttps://hdl.handle.net/20.500.12724/19463
dc.description.abstractThis study focuses on developing a solution to one of the main problems in the food sector, product deterioration, often due to poor inventory management, low turnover, and lack of shelf-life control, among other causes. Therefore, this study is based on the design of a lean inventory management model proposed to reduce the number of deteriorated products in an egg product company in Peru, based on the analysis of the problem within the company and the study of previous research. As a result, the proposed method uses the tools of Machine Learning, Material Requirement Planning (MRP), 5S, and First Extended First Out (FEFO), reducing the main problem by 65.57% and the demand forecast error by 47.21%, thus reducing one of the leading root causes of the main problem. Thanks to this improvement, this research can contribute knowledge so that other companies with similar issues can implement the model and improve their results.en_EN
dc.formatapplication/html
dc.language.isoeng
dc.publisherSeventh Sense Research Group
dc.relation.ispartofurn:issn: 2348-8360
dc.rightsinfo:eu-repo/semantics/openAccess*
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.sourceRepositorio Institucional Ulima
dc.sourceUniversidad de Lima
dc.subjectLean manufacturingen_EN
dc.subjectEfficient productionen_EN
dc.subjectWaste minimizationen_EN
dc.subjectOrganizational effectivenessen_EN
dc.subjectProducción eficientees_PE
dc.subjectMinimización de residuoses_PE
dc.subjectEficacia organizacionales_PE
dc.subject.classificationPendientees_PE
dc.titleMinimization of Smashed Products in Sustenance Industries by Lean and Machine Learning Toolsen_EN
dc.typeinfo:eu-repo/semantics/article
dc.type.otherArtículo en Scopus
dc.identifier.journalSSRG International Journal of Mechanical Engineering
dc.publisher.countryIN
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.11.04
dc.identifier.doihttps://doi.org/10.14445/23488360/IJME-V10I10P102
dc.contributor.studentCarbajal Vásquez, Keysi Alejandra (Ingeniería Industrial)
dc.contributor.studentPiscoya Alvites, Renato Alejandro (Ingeniería Industrial)
ulima.cat6
ulima.autor.afiliacionGarcía López, Yván Jesús (Engineering Faculty, Industrial Engineering Career, Universidad de Lima)
ulima.autor.carreraQuiroz Flores, Juan Carlos (Ingeniería Industrial)
ulima.autor.carreraGarcía López, Yván Jesús (Ingeniería Industrial)
dc.identifier.isni0000000121541816
dc.identifier.scopusid2-s2.0-85175614672


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess