Mostrar el registro sencillo del ítem

dc.contributor.authorKato Yoshida, Valeria Midori
dc.contributor.authorMosquera Mendoza, Ivone Brigiethe
dc.contributor.authorGarcía López, Yván Jesús
dc.contributor.authorQuiroz Flores, Juan Carlos
dc.contributor.otherGarcía López, Yván Jesús
dc.contributor.otherQuiroz Flores, Juan Carlos
dc.date.accessioned2023-12-13T17:08:10Z
dc.date.available2023-12-13T17:08:10Z
dc.date.issued2023
dc.identifier.citationKato Yoshida, M., Mosquera Mendoza, I., García López, I. J., & Quiroz Flores, J.C. (2023). Improving Demand Analysis and Supply Chain Management for Hair Products During the COVID-19 Pandemic: A Machine Learning Approach. International Journal of Engineering Trends and Technology, 71(9), 385-396. https://doi.org/10.14445/22315381/IJETT-V71I9P234es_PE
dc.identifier.urihttps://hdl.handle.net/20.500.12724/19479
dc.description.abstractThis research analyzes the demand for hair care products during the COVID-19 pandemic. Two forecasting models, Arima and Sarima, based on Machine Learning technology, were proposed to improve data analysis and supply chain management. The results showed that the SARIMA model had higher mean absolute error levels than the Arima model. The study also analyzed the demand for four hair dyes using statistical models, finding that three had seasonal demand. The SARIMA model accurately predicted demand for most hair dyes except one. Errors in the predictions were measured using different indicators, and the SARIMA model had lower error levels than the Arima model. The study's results were validated and compared with previous research, showing that the SARIMA model predicted the demand for hair dyes. Overall, this study highlights the usefulness of Machine Learning models in demand analysis and supply chain management of hair care products during the COVID-19 pandemic. These findings provide a reference framework for manufacturing industries with similar characteristics that wish to optimize demand management using Machine Learning techniques.en_EN
dc.formatapplication/html
dc.language.isoeng
dc.publisherSeventh Sense Research Group
dc.rightsinfo:eu-repo/semantics/openAccess*
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.sourceRepositorio Institucional Ulima
dc.sourceUniversidad de Lima
dc.subjectSupply chainen_EN
dc.subjectHair preparationsen_EN
dc.subjectMachine learningen_EN
dc.subjectPandemicsen_EN
dc.subjectCadena de suministroes_PE
dc.subjectProductos capilareses_PE
dc.subjectAprendizaje automáticoes_PE
dc.subjectPandemiases_PE
dc.subjectCOVID-19es_PE
dc.subject.classificationPendientees_PE
dc.titleImproving Demand Analysis and Supply Chain Management for Hair Products During the COVID-19 Pandemic: A Machine Learning Approachen_EN
dc.typeinfo:eu-repo/semantics/article
dc.type.otherArtículo en Scopus
ulima.areas.lineasdeinvestigacionProductividad y empleo / Innovación: tecnologías y productoses_PE
dc.identifier.journalInternational Journal of Engineering Trends and Technology
dc.publisher.countryIN
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.02.03
dc.identifier.doihttps://doi.org/10.14445/22315381/IJETT-V71I9P234
dc.contributor.studentKato Yoshida, Valeria Midori (Ingeniería Industrial)
dc.contributor.studentMosquera Mendoza, Ivone Brigiethe (Ingeniería Industrial)
ulima.cat9
ulima.autor.afiliacionGarcía López, Yván Jesús (Faculty of Engineering, Career of Industrial Engineering, Universidad de Lima)
ulima.autor.carreraGarcía López, Yván Jesús (Ingeniería Industrial)
dc.identifier.isni0000000121541816
dc.identifier.scopusid2-s2.0-85177024241


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess