Show simple item record

dc.contributor.authorSánchez López, Brenda Sofía Zoila
dc.contributor.authorCandioti Nolberto, Daniela
dc.contributor.authorTaquía Gutiérrez, José Antonio
dc.contributor.authorGarcía López, Yván Jesús
dc.contributor.otherTaquía Gutiérrez, José Antonio
dc.contributor.otherGarcía López, Yván Jesús
dc.date.accessioned2023-12-13T17:08:15Z
dc.date.available2023-12-13T17:08:15Z
dc.date.issued2023
dc.identifier.citationSánchez López. B. S., Candioti Nolberto, D., Taquia Gutiérrez, J. A., & García López, Y. (2023). Traditional Machine Learning based on Atmospheric Conditions for Prediction of Dengue Presence. Computación y Sistemas, 27(3), pp. 769-777. https://doi.org/10.13053/CyS-27-3-4383es_PE
dc.identifier.issn1405-5546
dc.identifier.urihttps://hdl.handle.net/20.500.12724/19484
dc.description.abstractThe dengue virus has become an increasingly critical problem for humanity due to its extensive spread. This is transmitted through a vector that sprouts in certain climatic conditions (tropical and subtropical climates). The transmission of the disease can be associated with certain climatic variables that reinforce the outbreak. Data were collected on dengue cases by epidemiological week registered in Loreto-Peru from January 1, 2016, to January 31, 2022. Likewise, data on meteorological variables (maximum and minimum temperature; dry and humid bulb temperature; wind speed and total precipitation in the area). In this study, four Machine learning modeling techniques were considered: Support Vector Machine (SVM), Decision Tree, Random Forest and AdaBoost; and the parameters defined to evaluate the models are: Accuracy, Precision, Recall and F-1. As a result, optimal AUC values were obtained in a range from 0.818 to 0.996 for the SVM, Random Forest and AdaBoost algorithms, likewise, in all weather stations the ROC curve showed good performance for all models, except for the Decision Tree algorithm. As a conclusion for this study the optimal model to associate dengue cases with climatic conditions is SVM.en_EN
dc.formatapplication/html
dc.language.isoeng
dc.publisherCentro de Investigación en Computación del Instituto Politécnico Nacional
dc.relation.ispartofurn:issn: 1405-5546
dc.rightsinfo:eu-repo/semantics/openAccess*
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.sourceRepositorio Institucional Ulima
dc.sourceUniversidad de Lima
dc.subjectMachine learningen_EN
dc.subjectForecastingen_EN
dc.subjectAprendizaje automáticoes_PE
dc.subjectDenguees_PE
dc.subjectProspectivaes_PE
dc.subject.classificationPendientees_PE
dc.titleTraditional Machine Learning based on Atmospheric Conditions for Prediction of Dengue Presenceen_EN
dc.typeinfo:eu-repo/semantics/article
dc.type.otherArtículo en Scopus
ulima.areas.lineasdeinvestigacionCalidad de vida y bienestar / Saneamientoes_PE
dc.identifier.journalComputación y Sistemas
dc.publisher.countryMX
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#3.03.05
dc.identifier.doihttps://doi.org/10.13053/CyS-27-3-4383
dc.contributor.studentSánchez López, Brenda Sofía Zoila (Ingeniería Industrial)
dc.contributor.studentCandioti Nolberto, Daniela (Ingeniería Industrial)
ulima.cat9
ulima.autor.afiliacionTaquía Gutiérrez, José Antonio (Universidad de Lima, Instituto de Investigación Científica)
ulima.autor.afiliacionGarcía López, Yván Jesús (Universidad de Lima, Instituto de Investigación Científica)
ulima.autor.carreraTaquía Gutiérrez, José Antonio (Ingeniería Industrial)
ulima.autor.carreraGarcía López, Yván Jesús (Ingeniería Industrial)
dc.identifier.isni0000000121541816
dc.identifier.scopusid2-s2.0-85176359852


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess