Mostrar el registro sencillo del ítem

dc.contributor.authorTaquía Gutiérrez, José Antonio
dc.contributor.authorGarcía López, Yván Jesús
dc.contributor.otherTaquía Gutiérrez, José Antonio
dc.contributor.otherGarcía López, Yván Jesús
dc.date.accessioned2023-12-13T17:08:33Z
dc.date.available2023-12-13T17:08:33Z
dc.date.issued2023
dc.identifier.citationTaquía Gutiérrez, J. A., & García López, Y. (2023). Retail Distribution using Georeferenced Systems and Genetic Algorithms for Product Delivery. Case study. Journal of Engineering Science and Technology Review, 16(5). 19-24. https://doi.org/10.25103/jestr.165.03es_PE
dc.identifier.issn1791-2377
dc.identifier.urihttps://hdl.handle.net/20.500.12724/19527
dc.description.abstractThis research will address air pollution, a severe problem in all world cities, because it negatively affects people's health and deteriorates the ecosystem. NO2 is a gas linked to acid rain formation and various reactions with greenhouse gases. Meteorological variables influence the behavior of tropospheric NO2 concentration. During the period of confinement due to the COVID-19 pandemic, the concentration levels of pollutants dropped abruptly, which meant relief for the ecosystem. The application of Time Series models allows us to graphically identify the concentration of contaminants in various areas and make accurate forecasts to mitigate environmental problems in the future. The research analysis shows that the SARIMA model effectively forecasts the pollutant concentration in the San Borja and San Martin de Porres districts in Lima. Error tests such as R2, MAE, MAPE, MSE, and RSME, as well as Dickey-Fuller Test, AIC, BIC, Skew, and Kurtosis, provide information on the performance of the SARIMA model and show that it is the most suitable.en_EN
dc.formatapplication/html
dc.language.isoeng
dc.publisherInternational Hellenic University, School of Science
dc.relation.ispartofurn:issn: 1791-2377
dc.rightsinfo:eu-repo/semantics/openAccess*
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.sourceRepositorio Institucional - Ulima
dc.sourceUniversidad de Lima
dc.subjectGenetic algorithmsen_EN
dc.subjectPhysical distribution of goodsen_EN
dc.subjectFooden_EN
dc.subjectDistribución comerciales_PE
dc.subjectAlgoritmos genéticoses_PE
dc.subjectLogística empresariales_PE
dc.subjectAlimentoses_PE
dc.subjectLima (Perú)es_PE
dc.titleRetail Distribution using Georeferenced Systems and Genetic Algorithms for Product Delivery. Case study.en_EN
dc.typeinfo:eu-repo/semantics/article
dc.identifier.journalJournal of Engineering Science and Technology Review
dc.publisher.countryGR
dc.type.otherArtículo en Scopus
dc.identifier.isni0000000121541816
ulima.autor.carreraTaquía Gutiérrez, José Antonio (Ingeniería Industrial)
ulima.autor.carreraGarcía López, Yván Jesús (Ingeniería Industrial)
ulima.autor.afiliacionTaquía Gutiérrez, José Antonio (Universidad de Lima, Instituto de Investigación Científica)
ulima.autor.afiliacionGarcía López, Yván Jesús (Universidad de Lima)
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.02.03
dc.identifier.doihttps://doi.org/10.25103/jestr.165.03
ulima.cat9
dc.identifier.scopusid2-s2.0-85177191660


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess