Show simple item record

dc.contributor.authorGutiérrez Cárdenas, Juan Manuel
dc.contributor.authorWang, Z.
dc.contributor.otherGutiérrez Cárdenas, Juan Manuel
dc.date.accessioned2024-01-11T15:50:32Z
dc.date.available2024-01-11T15:50:32Z
dc.date.issued2021
dc.identifier.citationGutiérrez-Cárdenas,J., & Wang, Z. (2021). Classification of Breast Cancer and Breast Neoplasm Scenarios Based on Machine Learning and Sequence Features from lncRNAs–miRNAs-Diseases Associations. Interdisciplinary Sciences – Computational Life Sciences, (13), 572-581. https://doi.org/10.1007/s12539-021-00451-6es_PE
dc.identifier.issn1867-1462
dc.identifier.urihttps://hdl.handle.net/20.500.12724/19567
dc.description.abstractThe influence of non-coding RNAs, such as lncRNAs (long non-coding RNAs) and miRNAs (microRNAs), is undeniable in several diseases, for example, in the formation of neoplasms and cancer scenarios. However, there are challenges due to the scarcity of validated datasets and the imbalance in the data. We found that the research of associations between miRNAs-lncRNAs and diseases is limited or done separately. In addition, those investigations, which use Machine Learning models joined with genomic sequence features extracted from miRNAs and lncRNAs, are few compared with using some methods such as genomic expression or Deep Learning techniques. In this paper, we propose a structure of using supervised and unsupervised machine learning models with genomic sequence features, such as k-mers, sequence alignments, and energy folding values, to validate miRNAs and lncRNAs association with breast cancer and neoplasms scenarios. Using One-Class SVM for outlier detection and comparing two supervised models such as SVM and Random Forest, we manage to obtain accuracy results of 95.44% for the One-class model, with 88.79% and 99.65% for the SVM and Random Forest models, respectively. The results showed a promising path for the study of sequence features interactions joined with Machine Learning models comparable to those found in the existing literature.en_EN
dc.formatapplication/html
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofurn:issn: 1867-1462
dc.rightsinfo:eu-repo/semantics/restrictedAccess*
dc.sourceRepositorio Institucional Ulima
dc.sourceUniversidad de Lima
dc.subjectBreast canceren_EN
dc.subjectNon-coding RNAen_EN
dc.subjectSupervised learning (Machine learning)en_EN
dc.subjectCáncer de mamaes_PE
dc.subjectARN no codificantees_PE
dc.subjectAprendizaje supervizado (Aprendizaje automático)es_PE
dc.subject.classificationPendientees_PE
dc.titleClassification of Breast Cancer and Breast Neoplasm Scenarios Based on Machine Learning and Sequence Features from lncRNAs–miRNAs-Diseases Associationsen_EN
dc.typeinfo:eu-repo/semantics/article
dc.type.otherArtículo en Scopus
ulima.areas.lineasdeinvestigacionCalidad de vida y bienestar / Saludes_PE
dc.identifier.journalInterdisciplinary Sciences – Computational Life Sciences
dc.publisher.countryCH
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#3.02.21
dc.identifier.doihttps://doi.org/10.1007/s12539-021-00451-6
ulima.cat15
ulima.autor.afiliacionUniversidad de Lima (Scopus)
ulima.autor.carreraIngeniería de Sistemas
dc.identifier.isni0000000121541816
dc.identifier.scopusid2-s2.0-85117284645


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record