Mostrar el registro sencillo del ítem

dc.contributor.authorGutiérrez Cárdenas, Juan Manuel
dc.contributor.otherGutiérrez Cárdenas, Juan Manuel
dc.date.accessioned2024-08-09T13:14:20Z
dc.date.available2024-08-09T13:14:20Z
dc.date.issued2024
dc.identifier.citationGutiérrez Cárdenas, J. M. (2024). Breast Cancer Classification Through Transfer Learning with Vision Transformer, PCA, and Machine Learning Models. International Journal of Advanced Computer Science and Applications. https://doi.org/10.14569/IJACSA.2024.01504104es_PE
dc.identifier.issn2158107X
dc.identifier.urihttps://hdl.handle.net/20.500.12724/20915
dc.description.abstractBreast cancer is a leading cause of death among women worldwide, making early detection crucial for saving lives and preventing the spread of the disease. Deep Learning and Machine Learning techniques, coupled with the availability of diverse breast cancer datasets, have proven to be effective in assisting healthcare practitioners worldwide. Recent advancements in image classification models, such as Vision Transformers and pretrained models, offer promising avenues for breast cancer imaging classification research. In this study, we employ a pretrained Vision Transformer (ViT) model, specifically trained on the ImageNet dataset, as a feature extractor. We combine this with Principal Component Analysis (PCA) for dimensionality reduction and evaluate two classifiers, namely a Multilayer Perceptron (MLP) and a Support Vector Machine (SVM), for breast mammogram image classification. The results demonstrate that the transfer learning approach using ViT, PCA, and an MLP classifier achieves an average accuracy, precision, recall, and F1-score of 98% for the DSMM dataset and 95% for the INbreast dataset, considering the same metrics which are comparable to the current state-of-the-art. © (2024), (Science and Information Organization). All Rights Reserved.en_EN
dc.formatapplication/html
dc.language.isoeng
dc.publisherScience and Information Organization
dc.rightsPendiente*
dc.rights.uriPendiente*
dc.sourceRepositorio Institucional Ulima
dc.sourceUniversidad de Lima
dc.subjectPendientees_PE
dc.subject.classificationPendientees_PE
dc.titleBreast Cancer Classification Through Transfer Learning with Vision Transformer, PCA, and Machine Learning Modelsen_EN
dc.typeinfo:eu-repo/semantics/article
dc.type.otherArtículo en Scopus
dc.identifier.journalInternational Journal of Advanced Computer Science and Applications
dc.publisher.countryGB
dc.subject.ocdePendiente
dc.identifier.doihttps://doi.org/10.14569/IJACSA.2024.01504104
ulima.lineadeinvestigacionPendientees_PE
ulima.catPendiente
ulima.autor.afiliacionPendiente
ulima.autor.carreraPendiente
dc.identifier.isni0000000121541816
dc.identifier.scopusid2-s2.0-85192063409


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem