Mostrar el registro sencillo del ítem

dc.contributor.authorFlores Aguirre, Miguel Gustavo
dc.contributor.authorGamarra Berríos, Guadalupe Valeria
dc.contributor.authorTaquía Gutiérrez, José Antonio
dc.contributor.otherTaquía Gutiérrez, José Antonio
dc.date.accessioned2024-10-15T16:59:55Z
dc.date.available2024-10-15T16:59:55Z
dc.date.issued2024
dc.identifier.citationFlores, M. G., Gamarra, G. V., & Taquía, J. A. (2024). A Device with Artificial Vision for the Analysis of Movements in Geriatric Patients. . https://doi.org/10.1109/ICMIMT61937.2024.10585916
dc.identifier.issn979-8-3503-6265-7
dc.identifier.urihttps://hdl.handle.net/20.500.12724/21362
dc.description.abstractThis article describes the design of a device that uses Deep learning and computer vision libraries to allow the analysis of postures in geriatric patients. The objective of the study was to evaluate the relationship between posture analysis in geriatric patients and the effect of distance, lighting, and speed in posture recognition with the two devices used for motion capture in Short Physical Performance Battery tests. This is an experimental type of research that contributes to a novel proposal to improve the living conditions of the elderly population and the search for healthy aging. It was possible to prove that the variables illumination, distance, and speed have a direct relationship with the posture analysis obtained with a Raspberry device and a core i7 computer, of which the core i7 computer had a better performance compared to the Raspberry. © 2024 IEEE.en_EN
dc.formathtml
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.rightsPendiente*
dc.sourceRepositorio Institucional Ulima
dc.sourceUniversidad de Lima
dc.subjectPendiente
dc.titleA Device with Artificial Vision for the Analysis of Movements in Geriatric Patients
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.type.otherArtículo de conferencia en Scopus
dc.subject.ocdePendiente
dc.identifier.doihttps://doi.org/10.1109/ICMIMT61937.2024.10585916
ulima.lineadeinvestigacionPendientees_PE
dc.contributor.studentFlores Aguirre, Miguel Gustavo (Ingeniería Industrial)
dc.contributor.studentGamarra Berríos, Guadalupe Valeria (Ingeniería Industrial)
ulima.catPendiente
ulima.autor.afiliacionPendiente
ulima.autor.carreraPendiente
dc.identifier.isni121541816
dc.identifier.scopusid2-s2.0-85199511149
dc.identifier.event2024 15th International Conference on Mechanical and Intelligent Manufacturing Technologies, ICMIMT 2024


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem