Mostrar el registro sencillo del ítem

dc.contributor.advisorQuiroz Flores, Juan Carlos
dc.contributor.authorPiccarreta Acosta, Riccardo
dc.contributor.authorZavala Arana, Alejandra
dc.date.accessioned2024-12-12T14:41:52Z
dc.date.available2024-12-12T14:41:52Z
dc.date.issued2024
dc.identifier.citationPiccarreta Acosta, R., & Zavala Arana, A. (2024). Cardano cryptocurrency price from Twitter. A prediction algorithm from machine learning [Tesis para optar el Título Profesional de Ingeniero Industrial, Universidad de Lima]. Repositorio Institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/21708es_PE
dc.identifier.urihttps://hdl.handle.net/20.500.12724/21708
dc.description.abstractCryptocurrencies are a growing market that has attracted the attention of many investors in recent years. While cryptocurrencies offer a secure and decentralized form of payment, this market is highly volatile. Factors influencing price changes include the balance of supply and demand, its utility, trading indicators, and market confidence. The present research aims to predict the price of the Cardano cryptocurrency by using machine learning techniques, specifically SVM, LSTM and BiLSTM models. In addition to accounting for financial indices, Twitter activity was used as a data source to measure market sentiment. The study analyzes various predictive horizons, including time ranges of 1 day, seven days, 14 days, 21 days and 30 days. The results obtained were validated with different performance indicators, and it was determined that the model predicts Cardano prices one month ahead with a MAPE of less than 22%, providing valuable information for investors interested in the volatile Cardano cryptocurrency market.en_EN
dc.description.abstractCryptomonedas son un mercado creciente que ha atraído la atención de varios inversionistas en los últimos años. Si bien las criptomonedas ofrecen una forma de pago segura y descentralizada, este mercado es muy volátil. Los factores que influyen en los cambios de precios incluyen el equilibrio de la oferta y la demanda, su utilidad, los indicadores de trading y la confianza del mercado. El objetivo de la presente investigación es predecir el precio de la criptomoneda Cardano mediante el uso de técnicas de aprendizaje automático, específicamente modelos de SVM, LSTM y BiLSTM. Además de tomar en cuenta índices financieros, se utilizó como fuente de datos la actividad en Twitter para medir la opinión del mercado. El estudio analiza diversos horizontes predictivos, incluyendo rangos de tiempo de 1 día, 7 días, 14 días, 21 días y 30 días. Los resultados obtenidos fueron validados con distintos indicadores de desempeño y se determinó que el modelo predice precios de Cardano con un mes de anticipación con un MAPE menor al 22% brindando información valiosa para los inversores interesados en el mercado volátil de la criptomoneda Cardano.es_PE
dc.formatapplication/pdf
dc.language.isoeng
dc.publisherUniversidad de Lima
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.sourceRepositorio Institucional - Ulima
dc.sourceUniversidad de Lima
dc.subjectAlgoritmoses_PE
dc.subjectAprendizaje automáticoes_PE
dc.subjectCriptomonedases_PE
dc.subjectTwitteres_PE
dc.titleCardano cryptocurrency price from Twitter. A prediction algorithm from machine learningen_EN
dc.typeinfo:eu-repo/semantics/bachelorThesis
thesis.degree.levelTítulo Profesional
thesis.degree.disciplineIngeniería Industriales_PE
thesis.degree.grantorUniversidad de Lima. Facultad de Ingeniería
dc.publisher.countryPE
dc.type.otherTesis
thesis.degree.nameIngeniero Industrial
renati.advisor.orcidhttps://orcid.org/0000-0003-1858-4123
renati.discipline722026
dc.identifier.isni121541816
renati.author.dni60191081
renati.author.dni76612634
renati.levelhttps://purl.org/pe-repo/renati/level#tituloProfesional*
renati.advisor.dni10300185
renati.jurorCorzo Chávez, Jorge Antonio
renati.jurorTupia De la Cruz, Elmer Luis
renati.jurorQuiroz Flores, Juan Carlos
renati.typehttps://purl.org/pe-repo/renati/type#tesis*
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.11.04
ulima.catOI


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess