Show simple item record

dc.contributor.authorLudeña Roman, Sayuri Arleth Renatta
dc.contributor.authorZelada Collazos, Sebastian
dc.contributor.authorCorzo Chávez, Jorge Antonio
dc.contributor.otherCorzo Chávez, Jorge Antonio
dc.date.accessioned2025-01-14T16:02:43Z
dc.date.available2025-01-14T16:02:43Z
dc.date.issued2024
dc.identifier.citationLudeña-Roman, S. A. R., Zelada-Collazos, S., & Corzo-Chavez, J. A. (2024). Demand Forecasting Model To Reduce The Mean Absolute Percentage Error By Applying Seasonal Breakdown Tools In A Sme In The Tourism Sector. Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering. https://doi.org/10.11159/icmie24.110es_PE
dc.identifier.issn2369-8136
dc.identifier.urihttps://hdl.handle.net/20.500.12724/21853
dc.description.abstractThe research work is based on the analysis of demand in a tourism company using mathematical models. The methodology design presents a correlational and descriptive scope where the company's sales are collected to calculate the mean absolute percentage error in demand. With the help of machine learning tools, a predictive analysis will be carried out to estimate the sales for the following year, seeking to reduce the error using one of the selected mathematical models, calculate the necessary sales force, and thereby reduce the economic impact equivalent to $16 789,02. The MAPE (Mean Absolute Percentage Error) in the tourism sector is 12,03%. Through calculations using Python and RISK, a value of 15, 36% was obtained, reducing the MAPE by 4,24% compared to the year 2022. The Systematic Review of the Literature allows us to showcase the tools that can be developed in similar or atypical scenarios. The choice will depend on the behaviour pattern or trend. © 2024, Avestia Publishing. All rights reserved.en_EN
dc.formatapplication/html
dc.language.isoeng
dc.publisherAvestia Publishingen_EN
dc.rightsinfo:eu-repo/semantics/openAccess*
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.sourceRepositorio Institucional - Ulima
dc.sourceUniversidad de Lima
dc.subjectPendiente
dc.titleDemand Forecasting Model To Reduce The Mean Absolute Percentage Error By Applying Seasonal Breakdown Tools In A Sme In The Tourism Sectoren_EN
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.publisher.countryCA
dc.type.otherArtícuo de conferencia en Scopus
dc.identifier.isni121541816
ulima.autor.carreraCorzo Chávez, Jorge Antonio (Ingeniería Industrial)es_PE
dc.contributor.studentLudeña Roman, Sayuri Arleth Renatta (Ingeniería Industrial)
dc.contributor.studentZelada Collazos, Sebastián (Ingeniería Industrial)
ulima.autor.afiliacionCorzo Chávez, Jorge Antonio (Facultad de Ingeniería, Universidad de Lima)es_PE
dc.identifier.eventProceedings of the World Congress on Mechanical, Chemical, and Material Engineeringen_EN
dc.subject.ocdePendiente
dc.identifier.doihttps://doi.org/10.11159/icmie24.110
dc.identifier.scopusid2-s2.0-85205133591


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess