Mostrar el registro sencillo del ítem

dc.contributor.authorLudeña Roman, Sayuri Arleth Renatta
dc.contributor.authorZelada Collazos, Sebastian
dc.contributor.authorCorzo Chávez, Jorge Antonio
dc.contributor.otherCorzo Chávez, Jorge Antonio
dc.date.accessioned2025-01-14T16:02:43Z
dc.date.available2025-01-14T16:02:43Z
dc.date.issued2024
dc.identifier.citationAutor. (2024). Demand Forecasting Model To Reduce The Mean Absolute Percentage Error By Applying Seasonal Breakdown Tools In A Sme In The Tourism Sector. Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering. https://doi.org/10.11159/icmie24.110
dc.identifier.issn2369-8136
dc.identifier.urihttps://hdl.handle.net/20.500.12724/21853
dc.description.abstractThe research work is based on the analysis of demand in a tourism company using mathematical models. The methodology design presents a correlational and descriptive scope where the company's sales are collected to calculate the mean absolute percentage error in demand. With the help of machine learning tools, a predictive analysis will be carried out to estimate the sales for the following year, seeking to reduce the error using one of the selected mathematical models, calculate the necessary sales force, and thereby reduce the economic impact equivalent to $16 789,02. The MAPE (Mean Absolute Percentage Error) in the tourism sector is 12,03%. Through calculations using Python and RISK, a value of 15, 36% was obtained, reducing the MAPE by 4,24% compared to the year 2022. The Systematic Review of the Literature allows us to showcase the tools that can be developed in similar or atypical scenarios. The choice will depend on the behaviour pattern or trend. © 2024, Avestia Publishing. All rights reserved.
dc.formathtml
dc.language.isoeng
dc.publisherAvestia Publishing
dc.rightsPendiente
dc.sourceRepositorio Institucional Ulima
dc.sourceUniversidad de Lima
dc.subjectPendiente
dc.titleDemand Forecasting Model To Reduce The Mean Absolute Percentage Error By Applying Seasonal Breakdown Tools In A Sme In The Tourism Sector
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.type.otherArtícuo de conferencia en Scopus
dc.publisher.countryCA
dc.subject.ocdePendiente
dc.identifier.doihttps://doi.org/10.11159/icmie24.110
ulima.lineadeinvestigacionPendientees_PE
dc.contributor.studentLudeña Roman, Sayuri Arleth Renatta (Ingeniería Industrial)
dc.contributor.studentZelada Collazos, Sebastián (Ingeniería Industrial)
ulima.catPendiente
ulima.autor.afiliacionPendiente
ulima.autor.carreraPendiente
dc.identifier.isni121541816
dc.identifier.scopusid2-s2.0-85205133591
dc.identifier.eventProceedings of the World Congress on Mechanical, Chemical, and Material Engineering


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem