Mostrar el registro sencillo del ítem

dc.contributor.authorChicchon, Miguel
dc.contributor.authorLeón Trujillo, Francisco James
dc.contributor.authorSipiran, Iván
dc.contributor.authorMadrid Argomedo, Manuel Ricardo
dc.contributor.otherMadrid Argomedo, Manuel Ricardo
dc.date.accessioned2025-09-09T21:26:37Z
dc.date.available2025-09-09T21:26:37Z
dc.date.issued2025
dc.identifier.issn2169-3536
dc.identifier.urihttps://hdl.handle.net/20.500.12724/23211
dc.description.abstractAn accurate land-cover segmentation of very-high-resolution aerial images is essential for a wide range of applications, including urban planning and natural resource management. However, the automation of this process remains a challenge owing to the complexity of images, variability in land surface features, and noise. In this study, a method for training convolutional neural networks and transformers to perform land-cover segmentation on very-high-resolution aerial images in a regional context was proposed. We assessed the U-Net-scSE, FT-U-NetFormer, and DC-Swin architectures, incorporating transfer learning and active contour loss functions to improve performance on semantic segmentation tasks. Our experiments conducted using the OpenEarthMap dataset, which includes images from 44 countries, demonstrate the superior performance of U-Net-scSE models with the EfficientNet-V2-XL and MiT-B4 encoders, achieving an mIoU of over 0.80 on a test dataset of urban and rural images from Peru.en_EN
dc.formatapplication/html
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_EN
dc.relation.ispartofurn:issn: 2169-3536
dc.rightsinfo:eu-repo/semantics/openAccess*
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subjectPendiente
dc.titleLand-Cover Semantic Segmentation for Very-High-Resolution Remote Sensing Imagery Using Deep Transfer Learning and Active Contour Lossen_EN
dc.typeinfo:eu-repo/semantics/article
dc.identifier.journalIEEE Access
dc.publisher.countryUS
dc.type.otherArtículo (Scopus)
dc.identifier.isni121541816
dc.subject.ocdePendiente
dc.identifier.doihttps://doi.org/10.1109/ACCESS.2025.3556632
dc.identifier.scopusid2-s2.0-105002585792


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess