Mostrar el registro sencillo del ítem

dc.contributor.authorLoyola Ferrer, Gabriela
dc.contributor.authorVeldi Díaz, Wiebke Fernanda
dc.contributor.authorQuiroz Flores, Juan Carlos
dc.contributor.otherQuiroz Flores, Juan Carlos
dc.date.accessioned2025-09-09T21:26:42Z
dc.date.available2025-09-09T21:26:42Z
dc.date.issued2025
dc.identifier.issn2349-0918
dc.identifier.urihttps://hdl.handle.net/20.500.12724/23244
dc.description.abstractIn Peru, the food and beverage services sector shows constant annual growth and a demand experiencing significant monthly variations. However, SMEs in this sector face recurring problems due to their low levels of preparedness, making demand fluctuations a latent threat. Food and beverage service SMEs suffer from inadequate inventory management, inaccurate supply planning and a lack of process optimization, which leads to a low level of On Time in Full (OTIF) deliveries. This is detrimental to an SME, as customer satisfaction is crucial in this sector. Due to this, the present study proposes an innovative Lean Management model that integrates 5S tools and Machine Learning to increase OTIF in a Peruvian beverage service SME. The research focuses on the Milk Tea and Smoothie product lines, which exhibited stockouts and high preparation and stock review times through analysis and diagnosis. The proposed model results in a reduction of 75.98% in the total cycle time of an order. Additionally, the implementation of Machine Learning helped reduce stockouts by providing a more accurate supply forecast, improving forecast error by 19.72% and 38.71% for tapioca and milk, respectively. These indicators led to a 51.42% increase in OTIF. Thus, this management model effectively innovates by adapting tools often used for manufacturing and production to the services sector, thereby achieving outstanding results in both efficiency and customer satisfaction.en_EN
dc.formatapplication/html
dc.language.isoeng
dc.publisherSeventh Sense Research Groupen_EN
dc.relation.ispartofurn:issn: 2349-0918
dc.rightsinfo:eu-repo/semantics/openAccess*
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subjectPendiente
dc.titleEnhancing Service Levels in a Peruvian Beverage SME: An Innovative Model Integrating Machine Learning and 5S Methodologyen_EN
dc.typeinfo:eu-repo/semantics/article
dc.identifier.journalInternational Journal of Engineering trends and Technologyen_EN
dc.publisher.countryMY
dc.type.otherArtículo (Scopus)
dc.identifier.isni121541816
dc.contributor.studentLoyola Ferrer, Gabriela (Ingeniería Industrial)
dc.contributor.studentVeldi Díaz, Wiebke Fernanda (Ingeniería Industrial)
dc.subject.ocdePendiente
dc.identifier.doihttps://doi.org/10.14445/22315381/IJETT-V73I3P140
dc.identifier.scopusid2-s2.0-105001247293


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess