Mostrar el registro sencillo del ítem
Improving fuel control in a transport company using iot and machine learning
| dc.contributor.advisor | Salazar Medina, Nicolás Francisco | |
| dc.contributor.author | Arrospide Ponce, Jose Roberto | |
| dc.contributor.author | Olivares Quispe, Jazmín Madeleine | |
| dc.date.accessioned | 2026-01-26T20:43:04Z | |
| dc.date.available | 2026-01-26T20:43:04Z | |
| dc.date.issued | 2025 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12724/24265 | |
| dc.description.abstract | La gestión del combustible es crítica para las empresas de transporte, ya que es el mayor componente de los costos operativos. El rendimiento de la empresa alcanzaba un promedio de solo 7,32 km/gal, siendo el teórico estándar de 9,46 km/gal, teniendo una brecha de 2,10 km/gal, esto se debe a los métodos tradicionales de medición manual ya que no brindan datos precisos ni actualizados, lo que impide tomar decisiones acertadas en el uso óptimo del combustible. Este estudio propone la integración de tecnologías IoT y Machine Learning para optimizar el control y gestión del combustible en una empresa peruana dedicada al transporte de carga pesada, permitiendo detectar patrones anómalos en el consumo de combustible, incrementando en 9,1% de rendimiento de galones y disminuyendo el consumo del combustible en 9,8% en el modelo mejorado y un ahorro en costos del 13,8%. | es_PE |
| dc.description.abstract | Fuel management is critical for transportation companies as it is the largest component of operating costs. The company's performance reached an average of only 7.32 km/gal, with the theoretical standard being 9.46 km/gal, having a gap of 2.10 km/gal, this is due to traditional manual measurement methods. since they do not provide accurate or updated data, which prevents making correct decisions regarding the optimal use of fuel. This study proposes the integration of IoT technologies (sensors) and Machine Learning to optimize fuel control and management in a Peruvian company dedicated to heavy cargo transportation, allowing the detection of anomalous patterns in fuel consumption, increasing by 9.1%. gallon yield and reducing fuel consumption by 9.8% in the improved model and a cost savings of 13.8%. | en_EN |
| dc.format | application/pdf | |
| dc.language.iso | spa | |
| dc.publisher | Universidad de Lima | |
| dc.rights | https://purl.org/coar/access_right/c_abf2 | |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | * |
| dc.subject | Pendiente | es_PE |
| dc.title | Improving fuel control in a transport company using iot and machine learning | en_EN |
| dc.type | https://purl.org/coar/resource_type/c_7a1f | |
| thesis.degree.level | Titulo profesional | |
| thesis.degree.discipline | Ingeniería Industrial | |
| thesis.degree.grantor | Universidad de Lima. Facultad de Ingeniería | |
| dc.publisher.country | PE | |
| dc.type.other | Tesis | |
| thesis.degree.name | Ingeniero Industrial | |
| renati.advisor.orcid | https://orcid.org/0000-0001-9583-9746 | |
| renati.discipline | 722026 | |
| dc.identifier.isni | 0000000121541816 | |
| renati.author.dni | 73035294 | |
| renati.author.dni | 75889868 | |
| renati.level | https://purl.org/pe-repo/renati/level#tituloProfesional | |
| renati.advisor.dni | 08220256 | |
| renati.juror | Santos Figueroa, Luis Enrique | |
| renati.juror | Quiroz Flores, Juan Carlos | |
| renati.type | https://purl.org/pe-repo/renati/type#tesis | |
| dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#2.11.04 | |
| ulima.cat | OI |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Tesis [1207]




