Show simple item record

dc.contributor.authorBravo, Javier
dc.contributor.authorVialardi Sacín, César
dc.contributor.authorOrtigosa, Álvaro
dc.contributor.otherVialardi Sacín, Césares_PE
dc.date.accessioned2018-11-05T16:24:48Z
dc.date.available2018-11-05T16:24:48Z
dc.date.issued2010
dc.identifier.citationBravo, J., Vialardi, C., & Ortigosa. Á. (2010). Using decision trees for improving AEH courses. En C. Romero, S. Ventura, M. Pechenizkiy, & R.S.J.D. Baker (Eds.), Handbook of Educational Data Mining (pp. 365-376).es_PE
dc.identifier.urihttps://hdl.handle.net/20.500.12724/7101
dc.description.abstractAdaptive educational hypermedia systems (AEHS) seek to make easier the learning process for each student by providing each one (potentially) different educative contents, customized according to the student’s needs and preferences. One of the main concerns with AEHS is to test and decide whether adaptation strategies are beneficial for all the students or, on the contrary, some of them would benefit from different decisions of the adaptation engine. Data-mining (DM) techniques can provide support to deal with this issue; specifically, this chapter proposes the use of DM techniques for detecting potential problems of adaptation in AEHS. © 2010 by Taylor & Francis Group, LLC.en_EN
dc.formatapplication/pdf
dc.language.isoeng
dc.publisherTaylor & Francis
dc.sourceRepositorio Institucional Ulima
dc.sourceUniversidad de Lima
dc.subjectEnseñanza individualizada
dc.subjectAdaptación escolar
dc.subjectMultimedia interactivos
dc.subjectIndividualized teaching
dc.subjectStudent adjustment
dc.subjectInteractive multimedia
dc.titleUsing decision trees for improving AEH courseses_ES
dc.typeinfo:eu-repo/semantics/bookPart
dc.type.otherCapítulo de libro en Scopus
dc.publisher.countryUS
dc.identifier.isni0000000121541816


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record