Show simple item record

dc.contributor.authorVílchez Román, Carlos
dc.contributor.authorHuamán Delgado, Farita
dc.contributor.authorSanguinetti Cordero, Sol
dc.contributor.otherSanguinetti Cordero, Sol
dc.date.accessioned2019-04-08T15:44:26Z
dc.date.available2019-04-08T15:44:26Z
dc.date.issued2019
dc.identifier.citationVílchez-Román, C., Huamán-Delgado, F., Sanguinetti-Cordero, S. (2019). Topic modeling applied to business research: A latent dirichlet allocation (LDA)-based classification for organization studies. In Annual International Symposium on Information Management and Big Data (pp. 212-219). Springer International Publishing. https://doi.org/10.1007/978-3-030-11680-4_21es_PE
dc.identifier.urihttps://hdl.handle.net/20.500.12724/8253
dc.description.abstractMore than 1.5 million academic documents are published each year, and this trend shows an incremental tendency for the following years. One of the main challenges for the academic community is how to organize this huge volume of documentation to have a sense of the knowledge frontier. In this study we applied Latent Dirichlet Allocation (LDA) techniques to identify primary topics in organization studies, and analyzed the relationships between academic impact and belonging to the topics detected by LDA.es_PE
dc.formatapplication/pdfes_PE
dc.language.isoeng
dc.publisherSpringeres_PE
dc.rightsinfo:eu-repo/semantics/restrictedAccess*
dc.sourceUniversidad de Limaes_PE
dc.sourceRepositorio Institucional - Ulimaes_PE
dc.subjectEmpresases_PE
dc.subjectEnterpriseses_PE
dc.titleTopic modeling applied to business research: A latent dirichlet allocation (LDA)-based classification for organization studieses_PE
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.type.otherArtículo de conferencia en Scopus
dc.publisher.countryCHes_PE
dc.identifier.doihttps://doi.org/10.1007/978-3-030-11680-4_21
ulima.catOI
ulima.autor.afiliacionSchool of Communications, Universidad de Lima (UL) (Scopus)
ulima.autor.carreraComunicaciónes_PE
dc.identifier.isni121541816
dc.identifier.scopusid2-s2.0-85063435611
dc.identifier.eventInformation Management and Big Data. SIMBig 2018


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record