Topic modeling applied to business research: A latent dirichlet allocation (LDA)-based classification for organization studies
dc.contributor.author | Vílchez Román, Carlos | |
dc.contributor.author | Huamán Delgado, Farita | |
dc.contributor.author | Sanguinetti Cordero, Sol | |
dc.contributor.other | Sanguinetti Cordero, Sol | |
dc.date.accessioned | 2019-04-08T15:44:26Z | |
dc.date.available | 2019-04-08T15:44:26Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Vílchez-Román, C., Huamán-Delgado, F., Sanguinetti-Cordero, S. (2019). Topic modeling applied to business research: A latent dirichlet allocation (LDA)-based classification for organization studies. In Annual International Symposium on Information Management and Big Data (pp. 212-219). Springer International Publishing. https://doi.org/10.1007/978-3-030-11680-4_21 | es_PE |
dc.identifier.uri | https://hdl.handle.net/20.500.12724/8253 | |
dc.description.abstract | More than 1.5 million academic documents are published each year, and this trend shows an incremental tendency for the following years. One of the main challenges for the academic community is how to organize this huge volume of documentation to have a sense of the knowledge frontier. In this study we applied Latent Dirichlet Allocation (LDA) techniques to identify primary topics in organization studies, and analyzed the relationships between academic impact and belonging to the topics detected by LDA. | es_PE |
dc.format | application/pdf | es_PE |
dc.language.iso | eng | |
dc.publisher | Springer | es_PE |
dc.rights | info:eu-repo/semantics/restrictedAccess | * |
dc.source | Universidad de Lima | es_PE |
dc.source | Repositorio Institucional - Ulima | es_PE |
dc.subject | Empresas | es_PE |
dc.subject | Enterprises | es_PE |
dc.title | Topic modeling applied to business research: A latent dirichlet allocation (LDA)-based classification for organization studies | es_PE |
dc.type | info:eu-repo/semantics/conferenceObject | |
dc.type.other | Artículo de conferencia en Scopus | |
dc.publisher.country | CH | es_PE |
dc.identifier.doi | https://doi.org/10.1007/978-3-030-11680-4_21 | |
ulima.cat | OI | |
ulima.autor.afiliacion | School of Communications, Universidad de Lima (UL) (Scopus) | |
ulima.autor.carrera | Comunicación | es_PE |
dc.identifier.isni | 121541816 | |
dc.identifier.scopusid | 2-s2.0-85063435611 | |
dc.identifier.event | Information Management and Big Data. SIMBig 2018 |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
This item appears in the following Collection(s)
-
Comunicación [28]