Load balancing method for KDN-based data center using neural network

View/ Open
ponencia_03_ Ruelas.pdf
(application/pdf: 885.9Kb)
(application/pdf: 885.9Kb)
Date
2019Metadata
Show full item recordAbstract
The growth of cloud application services delivered through data centers with varying
traffic demands unveils limitations of traditional load balancing methods. Aiming to attend
evolving scenarios and improve the overall network performance, this paper proposes a load balancing method based on an Artificial Neural Network (ANN) in the context of Knowledge-Defined Networking (KDN). KDN seeks to leverage Artificial Intelligence (AI) techniques for the control and operation of computer networks. KDN extends Software-Defined Networking (SDN) with advanced telemetry and network analytics introducing a so-called Knowledge Plane.
The ANN is capable of predicting the network performance according to traffic parameters paths.
The method includes training the ANN model to choose the path with least load. The experimental
results show that the performance of the KDN-based data center has been greatly improved.
How to cite
Ruelas, A. M. R. y Rothenberg, C. E.(2019). Load balancing method for KDN-based data center using neural network. En Universidad de Lima (Ed.), Hacia la transformación digital. Actas del I Congreso Internacional de Ingeniería de Sistemas (pp. 87-97), Lima, 13 y 14 de septiembre del 2018. Universidad de Lima, Fondo Editorial.Publisher
Universidad de LimaCategory / Subcategory
Ingeniería de sistemas / Diseño y métodosSubject
Collections