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Abstract 

 

We studied the effects that Peru’s social pension programme, Pensión 65, had on 

mortality. The programme provides pensions to people aged 65 and older who do not have 

other pension benefits and are extreme poor. The analysis relies on survey data obtained 

at the baseline and matched to mortality records of 2012-2019. We exploited the 

discontinuity around the welfare index used by the programme to determine eligibility, and 

estimate intention-to-treat effects. We found that, after seven years, the programme could 

reduce mortality among eligible people by about 11.4 percentage points, implying an 

increase in life expectancy of about one year. 
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1 Introduction 

Social security participation is low in developing countries, mostly due to the existence of large 

informal labour markets and the high predominance of precarious jobs in which pension and 

health contributions are not compulsory. As populations are rapidly becoming older in these 

countries, a popular solution for governments has been the establishment of social pension 

programmes providing pension transfers unrelated to histories of social security contributions. 

These schemes, also known as non-contributory pension (NCP) programmes, provide monetary 

transfers targeted at the elderly poor (although some are universal) who do not have contributory 

pensions and have reached retirement age. The transfer amounts tend to be small relative to the 

national average income or GDP per capita, but they are not trivial for the eligible elderly poor 

(Huang and Zhang, 2021). 

There is an important body of literature studying the effects of social pensions in low and 

middle-income countries, although more attention has been paid to labour and economic 

outcomes and less to health and welfare domains. Some distinctive pension programmes that 

have been widely studied are those implemented in South Africa (Duflo, 2000; Case and 

Deaton, 2001; Duflo, 2003), Brazil (Barrientos et al., 2003; de Carvalho-Filho, 2008) and 

Mexico (Aguila et al., 2015; Juarez and Pfutze, 2015). As these pensions are granted late in 

life— that is, when people are more fragile and health deteriorates quickly—they could 

contribute to the survival of individuals via well-known income effects on life expectancy. 

Indeed, keeping people alive is an important outcome for public intervention, let alone that it is 

a truly objective health outcome at advanced ages.1 

In this paper, we study the causal effects of Peru’s non-contributory pension programme, 

Pensión 65, on elderly mortality. The programme provides a pension equivalent to 125 soles 

per month, equivalent to approximately 32 US dollars, or 13% of the official minimum wage in 

2021. Although this amount may seem low, it could be important among the poor. For example, 

the transfer represents 62% of the national extreme poverty line in 2021 (or 33% of the national 

poverty line). We exploit a survey fielded in 2012, intentionally designed to apply a Regression 

Discontinuity Design (RDD) to uncover the causal effects of the programme. We match this to 

administrative records for the programme and mortality statistics from population registers for 

the 2012-2019 period. 

Evidence regarding the effects of social pensions on mortality is limited and mixed. In 

developed economies, for example, Balan-Cohen (2008) found that the Old Age Assistance 

(OAA) programme in the US was associated with a sizeable decrease in male mortality over 

the age of 64 after 1940. By contrast, Stoian and Fishback (2010) found that this programme had 

no signifi 
 

1In general, the positive association between income and health is well established in the literature (see, for 

instance Case et al., 2002; Deaton, 2002; Gerdtham and Johannesson, 2004; Smith, 2007; Smith and Goldman, 

2007; Von Gaudecker and Scholz, 2007; Belloni et al., 2013), but the literature is less extensive when it comes to 

identifying causal effects of income on health (see, for instance Smith, 1998; Deaton and Paxson, 1998; Smith, 

1999; Lenhart, 2019).
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cant impact on American urban mortality rates before 1940. For Canada, Emery and Matheson 

(2012) found that a means-tested social pension programme had no impact on the mortality of 

people aged 65-69, but they did find that the universal social pension programme for people aged 

70 and above (Old Age Security, OAS) reduced mortality by 4.2%.2 

With regard to studies focusing on low or middle-income countries, Cheng et al. (2018) 

report very modest evidence for the long-term effects of China’s New Rural Pension Scheme 

(NRPS) programme on mortality risk, whereas Huang and Zhang (2021) find a mortality-

income elasticity of -0.38 for the same programme based on 1-year mortality. For Chile’s social 

pension programme, Pensión Básica, Miglino et al. (2023) find an elasticity of -0.386 based on 

4-year mortality. For Mexico’s social programme, Progresa, Barham and Rowberry (2013) find 

an elasticity of -0.18 based on 1-year mortality for elderly individuals, while Jensen and Richter 

(2004) find an elasticity of -0.244 based on 2-year mortality for male pensioners aged 60 in 

Russia who suffered from pension arrears. 

The Pensión 65 programme gives a lifetime pension to people aged 65 and above who 

do not have any other pension benefits and reside in a household classified as extreme poor by 

the national targeting system, SISFOH. This classification is based on a continuous welfare 

index (the SISFOH score) given to households and compared with cutoff points determining 

three groups: extreme poor, non-extreme poor and non-poor. To estimate the causal effect of 

the programme on mortality, we exploit a discontinuity resulting from the eligibility rule of the 

SISFOH index on a sample of just eligible (extreme poor) and just ineligible (non-extreme 

poor) individuals, located each side of and very close to the eligibility threshold. We provide 

evidence rejecting the manipulation of the SISFOH score and argue that the eligibility condition 

is as if we were to randomly allocate treatment and control conditions locally around the threshold 

of eligibility. We estimate the intention-to-treat (ITT) effect of the programme and find that the 

7-year mortality rate of eligible individuals is reduced by 11.4 percentage points, implying a 

substantial reduction of 56.7% with respect to the mortality rate of ineligible individuals at the 

eligibility threshold. 

This result is robust to various checks, including the addition of pre-treatment health 

conditions, nutrition quality and objective markers such as anaemia, hypertension and 

anthropometric measurements associated with mortality risk. The mortality effect holds under 

different bandwidths, observation periods, model specifications (including the assessment of the 

hazard ratio of mortality rate in survival models), polynomial orders and various other 

robustness, falsification and validation tests. Relying on mortality parametric functions, we 

estimate that the programme could potentially increase the life expectancy of eligible 

individuals by about a year. This is a very important policy result for an income transfer 

programme. The cost-benefit analysis reveals that the cost for increasing life expectancy is well 

below (about 19-30%) the estimates of the value of a statistical life. Thus, the programme is 

cost effective. 
 

2We can also point to the results of social pensions reducing mortality  in South Africa by Mostert et al. (2022); 

and Arno et al. (2011), Galofré-Vilà et al. (2022), Engelhardt et al. (2022) in the US.
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Furthermore, we compute a mortality-income elasticity of -0.486, which is higher than the 

value found other studies. We argue that this could be because our observation period for 

mortality (7-year rate) is longer than the periods used in other papers. In addition, we analyse 

very poor elderly people who have experienced multiple deprivations during their lifetime with 

inadequate access to healthcare, nutrition and education, all of which lead to a higher mortality 

risk at the start of the programme. Thus, the effect of the income transfer could be very 

important (and more elastic) in preventing death for the very poor. 

Among the potential mechanisms behind the effect of the transfer on mortality, Bernal et al. 

(2022)— who use the follow-up of our survey in 2015— find that Pensión 65 has impacts on 

reducing anaemia and increasing nutrition quality, food expenditures and healthcare utilisation, 

as well as improving mortality risk markers. As all these variables have well-known effects on 

mortality, we consider them as leading mechanisms for the effect of the transfer on mortality. 

The remainder of this paper is organised as follows. Section 2 describes the NCP programme 

while Section 3 presents the data. Section 4 explains the empirical strategy, and Section 5 

analyses and discusses the results, as well as examining policy impacts. Section 6 presents and 

discusses evidence for validation, falsification and robustness checks. Lastly, Section 7 

concludes the study. 

 
2 Non-contributory pensions in Peru 

Pensión 65 is a government programme that provides social pensions to individuals aged 65 and 

above who do not have any other pension benefits and reside in a household classified as extreme 

poor by the national targeting system SISFOH. This scheme is part of a wave of new non-

contributory pension (NCP) programmes launched in Latin America during recent years. 

Pensión 65 provides a bi-monthly transfer of 250 soles to the recipients and facilitates 

registration in the public health system (Seguro Integral de Salud, SIS), which covers health at 

no cost, although it can incur some out-of-pocket expenditure. In principle, all individuals 

classified as poor by SISFOH are eligible for SIS—that is, both the extreme poor and the non-

extreme poor—but there is likely to be a relatively lower participation by the non-extreme poor 

in SIS. 

The pension amount has not changed since the implementation of the programme at the end 

of 2011. While the transfer was equivalent to 47 US dollars in 2012, this represented 32 US 

dollars in 2021. Even though the transfer has lost about 31% of purchasing power, it can be a 

relatively important source of income for poor individuals. For example, by looking at the 

figures from Peru’s National Institute of Statistics (INEI) for monetary poverty lines, we note 

the transfer represented 83% of the national extreme poverty line and 44% of the national 

poverty line in 2012; while in 2021 it represented 62% and 33%, respectively. In rural areas, 

these percentages were 98% and 59%, respectively. For 2012, the transfer represented 17% of 

the minimum wage, 14% of the national household income per capita in urban areas and 33% 

in rural areas.
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The programme reached 568,599 recipients in 2021, representing about 19% of the 

population aged 65 and above and involving a cost of 0.10% of the GDP. These percentages 

have not changed substantially since 2015, the time at which the programme reached maturity 

with slightly over half a million recipients. The programme started enrolling individuals living 

in the poorest districts of six prioritised departments, and in 2012, the roll-out continued to 

include 14 departments where a previous small-scale and short-lived pilot NCP programme had 

been in place.3 

As mentioned earlier, SISFOH (Sistema de Focalización de Hogares in Spanish) is the 

national targeting system in Peru. It maintains a national register of socio-economic conditions 

of households in order to assess whether a household could be eligible for social programmes. 

The SISFOH relies on data collected by government officials using a standardised 

questionnaire. The main outcome of SISFOH is the computation of a multidimensional welfare 

index (the SISFOH score) capturing the socio-economic conditions of households. This is 

compared with regional cutoffs to determine three poverty statuses: extreme poor, non-extreme 

poor and non-poor. This classification is valid for three years in urban areas and four years in 

rural areas. 
4  The largest collection of data for the SISFOH register took place in 2012. In the current 

study, we exploit a survey in which the sampling framework was based on that data collection. 

The variables collected for the register include the access to and quality of basic infrastructure 

(e.g., water, electricity and sewage), fuel type and quality, material quality of different parts of 

the dwelling, home overcrowding, education attainment, home assets and access to health 

insurance. 

It is important to note that the households do not know their SISFOH score; they are only 

made aware of their classification in one of the three mentioned poverty groups. Further, the 

score is determined independently from the regional cutoff points, which are undisclosed to the 

public. The methodology to compute the score is also complex and very difficult to grasp, if a 

household wanted to manipulate their answers to become eligible for a social programme. 

Manipulation of eligibility is a serious threat to the identification of causal effects, but we 

provide arguments and statistical evidence in Section 6 that there is no manipulation problem 

that could invalidate our empirical design and results. 

Apart from the roll-out censuses implemented to provide information to the SISFOH 

register, individuals can apply at municipality offices to obtain a poverty SISFOH classification. 

Once eligibility is confirmed, enrolment into Pensión 65 can take about 25 days. As mentioned 

in Bernal et al. (2022), other methods for programme enrolment include i) information 

campaigns that are jointly organised by local governments and officers from the programme, 

and 

ii) a search (carried-out by programme officials) for potential recipients who have not received 

their SISFOH classification or who do not yet have not their identity document (Documento 
 

3The Bono Gratitud pilot programme ran between October 2010 and August 2011 and reached 21,783 

participants distributed between 14 departments. The transfer was equal to 100 soles a month, and the eligibility 
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conditions were being aged 75 and above, and residing in a household classified as extreme poor. 
4For more methodological details about the welfare index algorithm, see Valderrama and Pichihua (2011).
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Nacional de Identidad), which is compulsory for eligibility checks. 

 

3 Data 

Our study exploits survey data specifically designed for the impact evaluation of Pensión 65. 

We match this (at the individual and/or household level) to three administrative data sources: i) 

mortality records for 2012-2019, ii) Pensión 65 records and iii) SISFOH registers. The primary 

data source is the Survey of Health and Well-being of the Elderly, known as ESBAM (Encuesta 

de Salud y Bienestar del Adulto Mayor). The sample framework of the survey is intentionally 

designed to implement a Regression Discontinuity Design (RDD) to study the causal effects of 

the programme. The baseline survey was carried out between November and December 2012, 

and the follow-up survey was held between July and September 2015. ESBAM collects 

information covering several objective and subjective health measurements, demographics, 

income and expenditure—both for each elderly individual and the household. The information 

is collected via face-to-face interviews, while medical technicians collect data for 

anthropometric measurements, arterial pressure and blood samples from the elderly individuals. 

The sample framework design takes into account 12 out of the 24 departments of Peru, 

because these regions had completed the collection of information for the SISFOH registers. 

These departments are Amazonas, Ancash, Cajamarca, Cusco, Huánuco, Junín, La Libertad, 

Loreto, Pasco, Piura, Puno and Lima (provinces). The other two conditions for being part of the 

sample framework are that i) households should be located within 0.30 standard deviations of 

the SISFOH score to the right or to the left of the threshold for extreme poverty, and ii) 

households should have at least one member aged between 65 and 80. The idea underlying this 

design is to try to observe households that are as similar as possible within the region around the 

eligibility threshold for Pensión 65. 5 In fact, Figure B–1 in the Appendix shows clearly that the 

ESBAM sample is very local when we compare it with the national distribution of the SISFOH 

score. That is, the sample is local in the sense that the SISFOH score for the ESBAM individuals 

is located just around the eligibility threshold. 

The initial ESBAM sample size amounts to 4,238 individuals.6 We match this data set to 

administrative records for the programme, SISFOH registers and mortality records using the 

National Identification Document number, which is included in the baseline of ESBAM. The 

Pensión 65 records allow us to identify the recipients of the programme and when they re- 
 

5More precisely, the sampling design consists of a two-stage random selection procedure: geographic clusters 

in the first stage and households with at least one older adult in the second stage. The primary sampling units 

(PSU) are defined as the census units in urban areas (blocks) and villages (centro poblado) in rural areas. The 

selection of PSU within each department and area takes place in the first stage according to a selection probability 

that is proportional to the total number of households, whilst the random sampling of households takes place in the 

second stage. 
6The sample size is determined with the Minimum Detectable Effect (MDE) approach, in which the chosen 

sample allows us to detect an effect as long as it is above a certain threshold. The MDE in ESBAM is equal to 0.15 

standard deviations, while the statistical power is set at 90% and the significance level is set at 5%.
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ceive the transfer. The SISFOH register provides information about the eligibility score and the 

poverty group classification of the households. The mortality records are drawn from the 

National Population Register (RENIEC, from its Spanish name) and allow us to identify the 

survival or death of each individual between December 2012 and December 2019. The 

information includes the date of death, but not the cause. After dropping observations with 

inconsistent information or with missing data on key variables, the sample size is reduced to 

3,885 individuals. The dropped observations include 137 individuals who were already 

recipients at the ESBAM baseline, 66 who declared in the survey that they were receiving 

contributory pensions, 59 who were classified as non-poor in the SISFOH registry, 23 with no 

SISFOH score information, three who were aged 81 and older, one who was deceased at 

baseline and 64 individuals who we could not identify in any records. 

Table 1 shows the distribution of our sample according to the eligibility conditions and 

whether the individual survived or died between 2012 and 2019. From the 2,525 eligible 

individuals in 2019, 432 had died and had 2,093 survived, showing a raw mortality rate of 17%. 

From the 1,360 ineligible individuals, 245 had died, and 1,115 had survived, implying a 

mortality rate of 18%. The table also reports mortality differences across age groups and by 

gender. As expected, we find that women have a lower mortality rate than men (15% and 19%, 

respectively), and relatively younger individuals have a lower mortality rate than older individuals 

(the mortality rate is 11%, 18% and 31% for the age groups 65-70, 71-75 and 76-80, 

respectively). 

Table 1: Distribution of observations in initial ESBAM sample 
 

Sex Age in 2012 
 

 Male Female  65-70 71-75 76-80 
Overall 

Overall 2,118 1,767 
 

1,901 1,204 780 3,885 

Survivor 1,705 1,503 1,686 984 538 3,208 

Dead 413 264 215 220 242 677 

Mortality rate 19% 15% 11% 18% 31% 17% 

Eligible 1,406 1,119 1,206 803 516 2,525 

Survivor 1,135 958 1,075 659 359 2,093 

Dead 271 161 131 144 157 432 

Mortality rate 19% 14% 11% 18% 30% 17% 

Ineligible 712 648 695 401 264 1,360 

Survivor 570 545 611 325 179 1,115 

Dead 142 103 84 76 85 245 

Mortality rate 20% 16% 12% 19% 32% 18% 

Notes: The sample is composed of individuals observed in the baseline of the 2012 

ESBAM survey. After dropping observations with inconsistent information or 

missing key information, the initial sample size is set to 3,885 individuals. 

 

Table B–1 in the Appendix provides summary statistics of the initial sample for the main 

variables used in this paper. Table B–2 shows the summary statistics for the sample we exploit
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in the econometric results of our regression discontinuity analysis. This sample is based on the 

determination of optimal bandwidth according to Calonico et al., 2015 (see Section 5.1 for 

details). In this last table, which includes eligible and ineligible people who are even closer to 

the threshold, we observe that the mortality rate is 15.8% among eligible individuals and 17.7% 

among their ineligible counterparts. 

An important feature of the ESBAM sample is that it is composed of very poor elderly 

individuals, in contrast to surveys used in other studies to study the mortality effects of (social) 

pensions that generally consider national surveys focused either on the total population or on 

the elderly population. The magnitude of this composition can be seen in Figure B–2 in the 

Appendix, reporting the ESBAM and national distribution of household income per capita for 

2012. We note that about 60% (or 70%) of the ESBAM sample have income levels below the 

bottom 20% (or 25%) of the national income distribution. It is important to bear in mind this 

characteristic of our sample when we analyse and discuss our econometric results because of 

potential important reductions in mortality due to income effects among poor people. 

 
4 Empirical strategy 

As explained before, households are given a score based on an official algorithm that takes into 

account their socioeconomic conditions and a set of weights for each socioeconomic variable. 

The comparison of the score with official regional cutoffs leads to the classification of 

households into extreme poor, non-extreme poor and non-poor. We argue that this classification 

provides a natural experiment in assigning eligibility to the programme. Thus, according to the 

centred score (the SISFOH score minus the cutoffs for extreme poverty), the individuals located 

to the left of the extreme poverty cutoff point (centred at zero) are eligible for the programme, 

whilst those located to the right are ineligible. The centred SISFOH score acts as the running 

variable, measuring the distance of an observation to the eligibility cutoff. These features of the 

programme facilitate the use of an RDD to analyse the potential impact of Pensión 65 on the 

eligible population. 

Figure 1 plots the probability of being a recipient of the programme at any time within the 

2012–2019 period as a function of the running variable. The graph shows that the probabilities 

of being treated around the eligibility cutoff exist and are different on each side of the threshold, 

which are assumptions required in RDD for causal identification (Hahn et al., 2001). We 

observe that individuals becoming eligible for the programme by just crossing the cutoff point 

have a substantial increase (of approximately 50%) in the probability of becoming recipients. 

The probability limit of the eligible individuals to be treated is 90%, while the same probability 

for the ineligible individuals is 40%. Thus, being eligible indicates a high probability of 

receiving the benefits from the programme. 

It is worth noting that the change in the probability of being treated differs depending on the 

period evaluated. As can be seen in Table B–3 and Figure B–3 in the Appendix, the strongest
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0 0 

association between eligibility and being a recipient occurs after three years of exposure (the 

probability change was 85% in 2015).7 

Figure 1: Probability of being a Pensión 65 recipient 
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Notes: The graph plots the probability of receiving Pensión 65 at any time in the period 

2012-2019 as a function of the running variable (SISFOH score minus eligibility cutoffs). 

The support of the running variable has been partitioned into exclusive bins. The number 

of bins is selected optimally to minimise the integrated mean square error of the underlying 

regression function, and the location is based on quantile spaced method using spacings 

estimators as suggested in Calonico et al. (2015). The square points indicate the local mean 

of the outcome at the midpoint of each bin. The bars represent the 95% confidence intervals 

of the local means. The solid lines are linear regressions that fit separately on each side of 

the threshold. Observations to the left (right) of the vertical dashed line are eligible 

(ineligible) for the programme. 

 

 
The potential effect of the programme is identified by the difference between the average 

value of the outcome to the left of the extreme poverty cutoff (eligible) and the average outcome 

to the right of the cutoff (ineligible). This is the Average Treatment Effect (ATE), which can be 

estimated in RDD using the following expression: 

 

 
ATE = lim E(yi|zi = z) − lim E(yi|zi = z) (1) 

z→z+ z→z− 

 

 

where yi is the outcome, zi is the running variable and z0 is the cutoff. When treatment is not 
 

7We also note that the proportion of treated individuals from the ineligible group of the baseline starts to 

increase after 2016, which coincides with a change in the SISFOH methodology (see Table B–3 in the Appendix). 

While there are 2,243 recipients accumulated up to 2015 (regardless of survival and eligibility conditions), there 

are 2,342 and 2,746 recipients accumulated up to 2016 and 2019, respectively. Thus, it is likely that the new 

SISFOH conditions of 2016 facilitated access to the programme for individuals who had previously been deemed 

ineligible but were very close to the eligibility threshold.
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deterministically assigned, eligibility is not perfectly correlated with the treatment condition, 

and hence equation 1 is the intention-to-treat (ITT); that is, the effect on the individuals located 

just to the left of the threshold. ITT measures the impact of treatment eligibility, as determined 

by the threshold rule. One approach to estimate equation 1 is comparing means in a range of z 

on the left and right of the threshold. However, if the slope of E[yi|zi] is non-zero on either side 

of the threshold, these averages will be biased estimates of the actual averages at the limit, as zi 

tends to z0. In practice, ITT estimates are typically formed by parametric fitting functions of 

E[yi|zi, zi ≥ z0] and E[yi|zi, zi ≤ z0] in the region around the threshold. Assuming linearity, the 

following econometric specification can be used to find the expected effects of the programme: 

 
E[yi|zi] = β0 + β1 · 1[zi < z0] + β2 · [zi −z0] + β3 · (zi −z0) · 1[zi < z0] (2) 

 
where β2 is the slope of the line to the right of the threshold, β2 + β3 is the slope of the line to 

the left of the threshold and β1 is the difference at the cutoff (Imbens and Lemieux, 2008). 

We use equation 2 to estimate the ITT of the programme on the mortality rate by means of 

linear regressions. In this case, the dependent variable takes the value of 1 if the individual has 

died and the value 0 if the individual has survived at a given period. In our main setup, we 

consider mortality observed in the whole 7-year period of analysis between 2012 and 2019. 

Therefore, yi = 1 if the individual died anytime between 2012 and 2019 and yi = 0 if the 

individual has survived at 2019. Auxiliary regressions will allow us to assess mortality at 

different periods. In addition, we include a vector of covariates in further regressions as a way 

to control for demographics and, importantly, for initial health conditions. We estimate the 

error terms clustering at the Primary Sampling Unit of the survey design.8 Furthermore, in all 

regressions we apply a triangular weighting kernel in the distance from the RD cutoff (Calonico 

et al., 2014); that is, the observations closer to the eligibility threshold have a larger weight, 

whilst those further away from the threshold have a smaller weight. 

Estimating the ITT effects for some relevant groups could be informative about how 

heterogeneous the effects of the program are on the mortality of distinctive groups. For this 

aim, we use equation 3, where τi,s is an indicator variable that identifies a person i who belongs 

to the sub-population s. In particular, we estimate effects for sub-populations grouped by sex, 

rural/urban areas, education (no schooling or some schooling) and age (65–70 or 71–80). The 

effects for the sub-populations of each group are quantified by β1 + β5 when τi,s = 1, and β1 

when τi,s = 0. 

 

E[yi|zi] = β0 + β1 · 1[zi < z0] + β2 · [zi −z0] + β3 · (zi −z0) · 1[zi < z0] 

+τi,s(β4 + β5 · 1[zi < z0] + β6 · [zi −z0] + β7 · [zi −z0] · 1[zi < z0]) (3) 
 

8We justify this clustering to deal with design uncertainty, as recommended by Abadie et al. (2020).
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The data used to linearly estimate the ITT effects of Pensión 65 can also be organised to 

estimate survival models. In this case, the data is organised so that we can observe whether the 

individual has survived or died at each month in the 2012–2019 period. According to Bor et al. 

(2014), the ITT estimator from the setting of discontinuous regressions can be easily extended 

to survival models. Continuity in the conditional expectation functions for each of the potential 

outcomes (E[yi(0)|zi = z] and E[yi(1)|zi = z]) is sufficient for the identification of regression 

parameters across the class of generalised linear models, which relate the conditional expectation 

to a linear model via a continuous link function, such as the logarithm or logit. In this way, for 

applications in survival analysis, equation 2 can be adapted to parametric and semiparametric 

models that specify the hazard as a function of the assignment variable and time. In particular, 

the hazard regression models can be made linear with the log-hazard by replacing E[yi|zi] in 

equation 2. 

We use equation 4 to run survival models and estimate the ITT effect of the programme on 

the hazard ratio.9 We use the logarithm of the risk of death (h(t)) as the dependent variable and 

assume a Gompertz-type parametric model, as is usually employed in the relevant empirical 

literature (see, for example, Chetty et al., 2016; Dodd et al., 2018; Olivera, 2019; Castellares et 

al., 2020 and Kulinskaya et al., 2020). We run sensitivity checks, including the use of 

alternative parametric functions such as Weibull and exponential. 

 

 
log[h(t)] = log[h0(t)] + β0 + β1zi + β2D + β3ziD + εi (4) 

 

As mentioned before, we justify the use of the ITT on the large jump observed in the 

discontinuity around the eligibility threshold shown in Figure 1. In order to provide robustness 

for the validity of our identification, we perform various checks in Section 6. Thus, we assess 

the validity of the RDD assumptions, as well as the stability and sensitivity of our estimated 

effects. All these tests assure us that we are indeed identifying a causal effect of the programme 

on mortality. 

 
5 Results 

5.1 Linear ITT effects 

The main results of the ITT effects of Pensión 65 on the mortality rate are reported in Table 2. 

The dependent variable takes the value of 1 if the individual dies at any time within the 2012–

2019 period and 0 if the individual survives. The first column utilises the full sample of the 

running variable around the eligibility threshold. In this case, we find that the mortality rate 

of the 
 

9The proportional hazard model assumes that h(t) is estimated by h(t) = h0(t) · exp(β0 + β1zi + β2D + β3ziD + 

εi), where h0(t) is a baseline hazard function that is assumed to be a Gompertz Distribution.
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eligible individuals is 5.6 percentage points (pp) lower than that of ineligible individuals. The 

mortality rate of ineligible people is 18.2 pp, implying that the programme could potentially 

reduce the mortality rate of the eligible individuals by about 31% (5.6/18.2). However, smaller 

bandwidths—where individuals are more alike on both sides of the eligibility threshold—could 

help to reduce the potential bias of the estimations. Column 2 shows the results for a bandwidth 

of +/- 0.20, which includes approximately half of the sample. For this sample, the mortality 

rate of eligible individuals is reduced by 8.3 pp, while that of ineligible people is 19.5 pp. 

 
Table 2: Effect of Pensión 65 on mortality rate 

 
 (1) (2) (3) 

Intention-to-treat (βˆ
1) -0.056 -0.083 -0.114 

 (0.028) (0.038) (0.045) 

Constant (βˆ
0) 

[0.047] 

0.182 

[0.028] 

0.195 

[0.011] 

0.201 

 (0.022) (0.038) (0.035) 

 [0.001] [0.028] [0.001] 

Bandwidth +/- 0.330 +/- 0.2 +/- 0.145 

Observations 3,885 2,104 1,577 

Percentage Sample Full sample 54% 41% 

Notes: The table reports the ITT estimates for mortality observed in 7 
years (Equation 2). The models use triangular kernel and local linear 
polynomial. The first model uses the full sample, which has a bandwidth 
of +/- 0.330. The second uses about half of the sample size, which has 
a bandwidth of +/- 0.2. The third uses the optimal bandwidth for point 
estimation as suggested by Calonico et al. (2015). The standard errors are 
clustered by the Primary Sampling Unit (PSU) of the sampling framing 
and are indicated in parentheses. P-values are reported in brackets. 

 

 
In order to reduce the risk of obtaining biased estimators due to incorrect choice of 

bandwidth, in the third column of Table 2 we implement the data-driven procedure of Calonico 

et al. (2015) to obtain the optimal size of the bandwidth. In what is our preferred model, we 

observe that the mortality rate of eligible individuals could decline by 11.4 pp, implying a 

substantial reduction of 56.7% (0.114/0.201) with respect to the mortality rate of ineligible 

individuals.10 

Figure 2 shows graphical evidence of the programme’s ITT effect on the mortality rate. This 

figure employs the optimal bandwidth obtained in the last regression of Table 2 and clearly shows 

the reduction in the probability of dying when an individual crosses the eligibility threshold. 

10The resulting optimal bandwidth is +/- 0.145, which we maintain for all further regressions. In any case, Figure 

D–4 in the Appendix plots the ITT effects for various bandwidths, including our optimal data-driven bandwidth. 

The estimates are always statistically significant and negative, although the magnitude of the effect tends to be 

smaller for wider bandwidths. 
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Figure 2: Intention-to-treat effects on mortality 
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Notes: The graph plots the probability of dying after seven years as a function of the running 

variable (SISFOH score minus eligibility cutoffs). The support of the running variable has 

been partitioned into exclusive bins. The number of bins is selected optimally to minimise 

the integrated mean square error of the underlying regression function, and the location is 

based on quantile spaced method using spacings estimators as suggested in Calonico et al. 

(2015). The square points indicate the local mean of the outcome at the midpoint of each 

bin. The bars represent the 95% confidence intervals of the local means. The solid lines are 

linear regressions that fit separately on each side of the threshold. Observations to the left 

(right) of the vertical dashed line are eligible (ineligible) for the programme. 

 

 
It is a well-known fact that mortality has gradients with age and sex, and therefore 

controlling for these covariates in the regressions may reduce potential bias arising from the 

composition effects of our sample. Moreover, the ESBAM survey includes various 

measurements related to health status and mortality risk at the baseline that may control for 

initial health conditions and risk factors.11 Therefore, we can reduce any potential estimation 

bias arising from initial differences between eligible and ineligible people on health status and 

risk factors. Table 3 reports the estimation results when we add these covariates into the 

regressions. Column 1 shows our original estimation without controls, and then gender and 

age are added in column 2. The magnitude of the ITT negative effect slightly reduces to -0.10 

and is still statistically significant at 95% (p-value = 0.025). Column 3 adds all the health-

related variables that were objectively measured in the survey by the interviewer and/or the 

medical technicians during the fieldwork. As before, the ITT effect is statistically significant 

(p-value = 0.063), but the magnitude of the estimator reduces to -0.083. Column 4 adds the 

health and nutrition variables reported by the individuals and shows an ITT effect of -0.096, 

which is statistically significant (p-value = 0.029). In the last column we add risk factors captured 

by the consumption of alcohol and tobacco and obtain an ITT effect equal to -0.098 (p-value = 

0.026). 
 

11See Tables A–1 and A–2 in the Appendix for the definitions of the covariates used in the analysis. 
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Thus, adding demographic covariates, initial health conditions and risk factors related to 

mortality does not change our results qualitatively. If anything, there is a reduction in the 

magnitude of the ITT effect of the programme on 7-year mortality from -0.11 to about -0.10. 

Role of covariates 

Table 3 reports the contribution to mortality of initial health conditions, nutrition and risk 

factors. Not surprisingly, males and older individuals exhibit a higher mortality risk. 

Individuals who showed high blood pressure (HBP) during the examination in the ESBAM 

fieldwork also have a higher mortality risk. This is in line with studies showing that HBP is 

one of the most important risk factors for cardiovascular disease, which has been reported as 

one of the main causes of mortality in old age (see Arima et al., 2011; Lev-Ari et al., 2021; Lee 

et al., 2022). Obesity also contributes to increasing cardiovascular risk and hence higher 

mortality risk. We capture obesity in ESBAM by weight and abdominal obesity. The latter is 

assessed by comparing waist circumference to cutoffs that are specific for Latin American 

populations (see ALAD, 2010; Pajuelo-Ramirez et al., 2019). Our results indicate that obesity 

contributes to a higher mortality rate.
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Table 3: Effect of Pensión 65 on mortality rate, including covariates 
 

 (1) (2) (3) (4) (5) 

ITT -0.114** -0.101** -0.083* -0.096** -0.098** 
 (0.045) (0.045) (0.045) (0.044) (0.044) 

Male  0.043** 0.067** 0.072** 0.077** 
  (0.019) (0.028) (0.029) (0.030) 

Age  0.017*** 0.013*** 0.013*** 0.013*** 
  (0.002) (0.002) (0.002) (0.003) 

High blood pressure   0.053** 0.043* 0.043* 
   (0.023) (0.023) (0.023) 

Anaemia   0.033 0.038 0.038 
   (0.024) (0.024) (0.024) 

Weight   0.005** 0.006*** 0.006*** 
   (0.002) (0.002) (0.002) 

Abdominal obesity   0.045 0.049* 0.049* 
   (0.030) (0.030) (0.030) 

Arm span   -0.000 -0.001 -0.001 
   (0.001) (0.001) (0.001) 

Mid-upper arm circ. (MUAC)   -0.015** -0.012** -0.012** 
   (0.006) (0.006) (0.006) 

Calf circumference (CC)   -0.016*** -0.012** -0.013** 
   (0.006) (0.006) (0.006) 

Cognitive functioning   -0.016*** -0.012** -0.012** 
   (0.006) (0.006) (0.006) 

Chronic diseases    0.008 0.007 
    (0.009) (0.009) 

Health today    -0.009 -0.010 
    (0.022) (0.022) 

Nutrition score (MNA)    -0.015*** -0.015*** 
    (0.005) (0.005) 

Alcohol     -0.002 
     (0.025) 

Tobacco     -0.017 
     (0.028) 

Constant 0.201*** -1.043*** -0.046 0.018 0.017 

 (0.035) (0.174) (0.317) (0.314) (0.315) 

Observations 1,577 1,577 1,513 1,483 1,481 

Notes: The table reports the ITT estimates for mortality observed over 7 years (equation 2) including 
covariates related to the mortality risk. The models use triangular kernel, local linear polynomial and 
the optimal bandwidth for point estimation as suggested by Calonico et al. (2015) (obtained in Table 
2). The standard errors are clustered by the Primary Sampling Unit (PSU) of the sampling framing and 
are indicated in parenthesis. *p < 0.10, **p < 0.05, and ***p < 0.01 indicate statistical significance 
levels. 

 

 
Mid-upper arm circumference (MUAC) and calf circumference (CC) are well-known 

indicators of muscle loss, capturing nutritional status and ultimately affecting the mortality risk 

of older individuals. It has been shown that individuals with low muscle mass (i.e., thinness) 

have a higher risk of mortality (Wijnhoven et al., 2010; Schaap et al., 2018; Weng et al., 2018). 

As indicated in Bernal et al. (2022), low values of MUAC or CC are strongly associated with 

mortality, with a predictive power even greater than that of the Body Mass Index (BMI). Our
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results appear to confirm these associations between mortality and values of MUAC and CC. 

We observe that the coefficients for these markers are negative and statistically significant in 

all the models in Table 3; that is, individuals with signs of thinness are more likely to die. The 

magnitude of the effect of one additional centimetre in CC or MUAC is similar in magnitude to 

the effect of being one year younger. 

Cognitive functioning is captured by a reduced version of the Mini-Mental State 

Examination (MMSE) (Folstein et al., 1975), which was operationalised during the survey 

fieldwork. The study by Leist et al. (2020) explains this score in greater detail and assesses its 

relationship with nutrition by exploiting the baseline round of ESBAM (see definition in Table 

A–1). We find that a higher level of cognitive functioning is associated with lower mortality. 

The Mini Nutritional Assessment (MNA, the empirical definition of which is explained in 

detail in Table A–2) is a score capturing dietary quality and is useful to rapidly assess 

malnutrition risks through a few questions posed to the elderly individuals (Guigoz, 2006; 

Harris and Haboubi, 2005; Vellas et al., 1999). The study by Bernal et al. (2022)—who make 

use of the follow-up survey of ESBAM—finds evidence that MNA may be one of the key 

mechanisms through which Pensión 65 could affect nutrition-related health outcomes among 

eligible individuals. With regard to the relationship with mortality, we find a strong statistical 

link to mortality (β2 = -0.015; p-value = 0.002 in the last model of Table 3). Thus, increasing the 

quality of diet and decreasing the risk of malnutrition is associated with a reduction in mortality. 

Heterogeneous effects 

In order to assess whether the programme may have differential mortality effects for certain 

groups of individuals, we estimate models based on equation 3. We report the estimated ITT 

coefficients across four distinctive groups (gender, age, area and education) in Figure 3. While 

the overall effect of the programme in reducing mortality among eligible individuals is 

statistically significant, we do not find evidence of any specific effects on groups of males, 

younger old adults (aged 65–70), persons residing in rural areas and individuals having some 

education.12 The ITT effects are statistically significant for individuals who are female, aged 

71–80, who live in urban areas and who do not have any years of schooling. It is well known that 

being older and having lower human capital (e.g., captured by education) is associated with 

higher mortality rates. Therefore, our results regarding old and uneducated individuals may 

indicate that the programme could substantially reduce the mortality rate for these populations, 

which are already facing a high level of mortality risk. Thus, the relative survival gains 

triggered by the programme could be more salient for these groups. 
 

12Individuals in the ESBAM sample tend to have very low educational attainment due to poverty conditions 

experienced in their lifetime. For example, 27% of individuals have no years of schooling, while 52% have 

incomplete primary education and only 14% have completed primary education.
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Figure 3: Heterogeneous effects on mortality rate 
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Notes: The graph plots the estimated ITT coefficients from equation 3 for four distinctive 

demographic groups (by sex, age, area and education) and the overall effect. The vertical 

lines indicate 95% confidence intervals. 

 
We also assess whether the effects of Pensión 65 are different for individuals living in 

households that receive transfers from the other main social programme in Peru (Juntos) 

compared with individuals who live in households that do not receive these transfers. We do 

not find statistically significant results in this regard.13 Furthermore, we evaluate whether 

having more than one older adult at home (and hence more than one potential recipient) may lead 

to different effects of the programme, but again we do not find significant results.14 

 
5.2 ITT effects with survival models 

The use of survival models is an alternative to the linear regressions used in the previous section 

to estimate the ITT effect. As already explained, we use the log of the hazard ratio of mortality 

as the dependent variable to obtain our ITT estimates in a comparable setting to the linear 

models (see equation 4). The results are reported in Table 4 and are based on a Gompertz type 

parametric model.15 
 

13Juntos is a conditional cash transfer programme that provides benefits to households where there are children 

and/or pregnant women on the condition that these members fulfil certain required health and education 

commitments. To be eligible for this programme, households must be classified as poor by SISFOH (that is, as 

extreme or non-extreme poor). Given that our RDD compares extreme and non-extreme poor individuals who are 

very close to the eligibility cutoff, then any household of our sample could be potentially eligible for Juntos. 
14The effect is 11.1% and 11% for households with one and two eligible individuals, respectively (the results 

are not reported). 
15The results do not change qualitatively if we use other parametric functions, such as Exponential or Weibull, 

or even if a Cox regression is estimated. We report the ITT estimates of alternative functions in Table C–1 in the
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The last column of Table 4 shows the ITT effect of the programme on the log of the mortality 

hazard rate when we use the selected optimal bandwidth. We observe that eligible individuals 

have a 57% lower risk of dying than ineligible individuals (hazard ratio = exp(−0.846) = 43%), 

which is the same value as the percentage variation in the mortality rate when using the linear 

ITT models. 

 
Table 4: Effect of Pensión 65 on log of mortality hazard rate 

 
 (1) (2) (3) 

Intention-to-treat (βˆ
1) -0.389 -0.585 -0.846 

 (0.192) (0.255) (0.324) 

Constant (βˆ
0) 

[0.040] 

-3.909 

[0.022] 

-3.770 

[0.009] 

-3.768 
 (0.160) (0.215) (0.243) 

 [0.001] [0.001] [0.001] 

Bandwidth +/- 0.330 +/- 0.2 +/- 0.145 

Observations 3,885 2,104 1,577 

Percentage Sample Full sample 54% 41% 

Notes: The table reports the ITT estimates for the log of mortality hazard 
rate observed during 7 years (equation 4). The estimator corresponds to a 
Gompertz-type model. The models use triangular kernel, local linear 
polynomial and the optimal bandwidth for point estimation as suggested by 
Calonico et al. (2015) (obtained in the last model of Table 2). The standard 
errors are indicated in parenthesis. P-values are reported in brackets. 

 

 
Figure C–1 in the Appendix plots the ITT effect on the log of mortality hazard ratio as a 

function of the running variable. As shown before in Figure 2 with the linear estimations, we 

also observe a clear reduction in the mortality risk of individuals when they pass the eligibility 

threshold. Furthermore, the survival ITT estimates show the same behaviour regarding the 

assessment of the effect on alternative bandwidths across heterogeneous groups of individuals 

and covariates (see Figures D–5, C–2 and Table C–2 in the Appendix). 

 
5.3 Potential mechanisms 

Among the potential mechanisms behind the effect of the transfer on mortality, we note that 

Bernal et al. (2022) use the follow-up of the ESBAM survey (fielded between July and 

September 2015) to estimate the effects of Pensión 65 on nutrition-related health outcomes. 

They find that the programme has impacts on reducing anaemia and depression symptoms, and 

increasing nutrition quality, food expenditure, cognitive functioning, healthcare utilisation and 

self-reported health, as well as improving mortality risk markers, such as the mid-upper arm 

circumference and calf circumference. As already documented, some of these factors have 

well-known effects on mortality, and therefore we could consider them as leading mechanisms 
 

Appendix.



19  

for the effect of the pension transfer on reducing mortality (also see Table 3). That is, the 

transfer may allow individuals to increase their food expenditure and nutrition quality, and visit 

health facilities more frequently, which can reduce anaemia incidence and mortality risks. 

We also accessed the follow-up survey of 2015, so that we are able to run RD regressions 

to find the ITT effects of the programme on several outcomes that are potentially mechanisms 

affecting the mortality rate. From the 3,885 observations of our baseline, we found 3,514 

individuals who were surveyed in the follow-up. This number is larger than the 3,351 subjects 

used in Bernal et al. (2022), because we were able to manually identify respondents whose 

SISFOH score was missing. 

Table F–1 in the Appendix shows the ITT effects of the programme. The first set of results 

in the table use the full sample of the follow-up survey and produce similar results to those 

obtained by Bernal et al. (2022). Because the design of the sampling framework involves a very 

local sample, the authors argue that one could use the full sample without needing to reduce the 

already small bandwidths. The second set of results show what the ITT effects of the 

programme would be if we use the same bandwidth and kernel weighting utilised in our analysis 

of 7-year mortality (bandwidth equal to 0.1448). In this case, the programme may have 

significant impacts on increasing cognitive functioning, reporting chronic diseases, self-

reported health and healthcare utilisation, while reducing obesity and food expenditure per 

capita at the threshold.16 

The third set of results show the ITT effects when we use the non-parametric approach 

suggested by Calonico et al. (2015) for each outcome (rdrobust with kernel weights and 

polynomial of degree one, and MSE-optimal bandwidths) that is closer to our main analysis of 

mortality. For this approach, we observe that the programme reduces the incidences of 

hypertension and obesity, improves MUAC (i.e., reduces the mortality risk) and self-reported 

health and healthcare utilisation, but that it reduces food expenditure per capita at the threshold 

(p −value=0.082) even when the effect is positive when we employ the full sample. The survey 

does not allow us to identify the consumption of each family member and therefore we should 

interpret the result for food expenditure per capita with caution. Furthermore, we detect a 

statistically significant increase in the number of household members, which could explain the 

negative impact on food expenditure per capita. The programme does not show impacts on total 

and household food expenditure under the non-parametric approach. 

 
5.4 Policy impact 

An important policy outcome of our analysis is estimating how much longer a person eligible for 

the programme could live. Is the Pensión 65 programme able to extend the lifespan of its 

recipients? If so, then for how long? The structure of our survival data from 2012 to 2019 

allows us to 
 

16The positive effect of the programme on chronic diseases can be interpreted as the effect of having more 

income to attend healthcare facilities, and receive diagnoses of illnesses and be given information to treat them.



20  

use actuarial methods to estimate life tables for eligible and ineligible individuals. We organise 

the data by year of observation and age, and identify the number of persons dying at each age 

between 2012 and 2019. We obtain the average mortality rates between age x and x + 1 using 

all the available cohorts providing this information, and then we compute the raw number of 

survivors by age.17 We use a Gompertz type function to estimate survival curves at age 65 for 

both eligible and ineligible individuals and report the results in Figure 4. The estimated curves 

show that eligible individuals tend to live longer than ineligible individuals, resulting in a 

difference of 1.03 years in life expectancy. 

Figure 4: Survival curves for ESBAM sample by eligibility condition 
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Notes: The figure shows the estimated survival functions of eligible and ineligible 

individuals. The estimation employs the full ESBAM sample of deceased and surviving 

individuals between 2012 and 2019 and assumes a Gompertz-type mortality function. 

 
The estimations indicate that ineligible individuals have a life expectancy at age 65 equal to 

20.35 years, whilst this is 21.38 for eligible individuals. To put these figures into context, the 

current official life tables for the main contributory pension system in Peru (the Private Pension 

System, SPP) indicate that the average life expectancy of both sexes at age 65 is 23.43 years. 

Our estimations indicate that the programme could extend life expectancy (measured at age 65) 

by about 1 year; that is, the life expectancy of eligible individuals may increase by 5.1% 

(=1.03/20.35). 

In the cost-benefit analysis literature focusing on the impact of regulations on life 

expectancy (e.g. Viscusi, 1994; Robinson et al., 2019), a policy is considered cost effective if 

its monetary costs are lower than the gains in terms of the value of statistical life (VSL). The 

VSL 
 

17For example, the mortality rate between age 70 and 71 is the average of the mortality rates of the 1947 cohort 

observed in 2013, the 1948 cohort observed in 2014, the 1949 cohort observed in 2015, and so on. This procedure 

implies the assumption that we treat cohorts between 1932-1947 as just one cohort. We use the full sample in order 

to have enough observations to estimate survival functions by age and eligibility condition.
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can thus be understood as the willingness to pay for reducing the risk of mortality. As explained 

in Robinson et al. (2019), a policy causing a decrease in mortality over a given time period will 

reduce the number of deaths and increase life expectancy, and VSL could accordingly capture 

the total monetary value of the individual risk reductions as the value per expected life saved. 

The estimation of VSL utilising specific data is more widespread among high-income countries, 

but there are some studies that estimate and/or extrapolate VSL values for other selected 

countries. Table E–1 in the Appendix reports these values for Peru in 2012. Depending on the 

approach, the values go from 0.36 to 3.33 million US dollars, with an average of 0.98 million. 

The cost of the Pensión 65 programme for an eligible individual is estimated as the 

discounted (interest rate equal to 3%) sum of all the pension transfers the individual could 

receive during the expected life length starting at age 65, which amounts to 8,753 US dollars in 

2012. That is, the cost for enabling one more expected year of life is 8,753 dollars. In line with 

Miglino et al. (2023), we multiply this amount by the life expectancy estimated for eligible 

individuals (21.38 years) and compare it with the estimates of VSL reported in Table E–1 in the 

Appendix.18 The cost of the programme is 187,143 US dollars, which is lower than any of the 

VSL estimates for Peru. Indeed, the cost of the programme is only 19% or 30% of the average 

and median values of VSL, respectively. 

A complementary way for reporting the policy impact of the programme—and for 

comparison with other studies—is to estimate the mortality-income elasticity, which is the 

percentage change in mortality due to a 1% change (increase) in income. Given that our analysis 

is based on individuals at the baseline, we assume that eligible individuals will receive the 

pension transfer and ineligible individuals will not receive it. We compute augmented individual 

incomes by adding the pension transfer (125 soles) to the household income per capita of the 

eligible individuals, and find that the income of eligible individuals could increase by 46.5% 

on average. For consistency, we also estimate the average effect of the programme on mortality, 

obtaining a variation equal to 22.6%. Thus, the elasticity is equal to -0.486 (= 22.6% / 46.5%) 

with 95% confidence intervals between -0.064 and -0.907.19 

Our elasticity estimate is larger than the values found in other papers studying the effects of 

social pensions on mortality in middle-income countries with less developed social security 

systems. For instance, Miglino et al. (2023) find an elasticity of -0.386 based on 4-year mortality 

for people aged 65 and older participating in Chile’s social pension programme, Barham and 

Rowberry (2013) find an elasticity of about -0.18 based on 1-year mortality for people aged 65 

and older who are recipients of Mexico’s social programme, Progresa, Huang and Zhang (2021) 

find an elasticity of -0.38 based on 1-year mortality for recipients aged 60 and older from the 

Chinese NRPS programme and Jensen and Richter (2004) find an elasticity of -0.244 based on 
 

18However, there is a difference in the method used to estimate life expectancy. Miglino et al. (2023) assume 

that their treatment and control groups follow the same mortality profile in the Chilean population after their 

observation period of 4 years, while we estimate life expectancy specific to each group. 
19Alternatively, if we use household expenditure per capita instead of household income per capita, the elasticity 

would be -0.546, with 95% confidence intervals between -0.078 and -1.014.
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2-year mortality for male pensioners aged 60 who suffered pension arrears in Russia. It should 

be noted that we consider a longer period than other studies to compute the mortality rate (we 

estimate mortality after 7 years). 

This could be one of the reasons why we obtain a larger elasticity. Furthermore, it is 

worthwhile to mention that the population analysed in our study is very poor and has 

experienced multiple deprivations across their lifetime, with little access to healthcare, 

education and quality nutrition. All of this contributes to a higher mortality risk at the start of 

the programme. Thus, the effect of the income transfer could be very important (and more elastic) 

in preventing death for the very poor. 

 
6 Validation, falsification and robustness 

In this section, we show evidence for our identification assumptions and robustness. First, we 

prove that the running variable is unlikely to have been manipulated. Second, we assess the 

validity of the design by performing a falsification exercise. Third, we show how sensitive the 

results are to the exclusion of observations very close to the cutoff. Lastly, we further illustrate 

the robustness of the results by changing the specification of the models and time of exposure 

to the programme. 

 
6.1 Manipulation of the running variable 

As Lee and Lemieux (2010) point out, if individuals cannot manipulate the assignment variable, 

then a treatment variation near the threshold is randomised as though in a randomised 

experiment. Thus, showing evidence that households have not manipulated the running variable 

is essential for the credibility of the estimate derived from the RD strategy. We concur with the 

arguments given by Bernal et al. (2022) as to why the eligibility process is unlikely to be 

susceptible to manipulation: (i) Household answers used in the SISFOH were collected before 

the implementation of Pensión 65, so there was no incentive to manipulate responses to 

participate in a non-existent programme. (ii) The algorithm to compute the SISFOH index is 

too complex to be understood by the individuals, and the regional eligibility thresholds are 

unknown to the public. (iii) Most of the variables included in the computation of the SISFOH 

index are obtained in person by government officials during the fieldwork, so that they cannot 

be easily manipulated by the individuals. Thus, manipulation would be unlikely. 

We nevertheless test whether households could have manipulated the running variable, first 

using the approach suggested by McCrary (2008). This indicates that in the absence of 

manipulation, the density of the running variable should be continuous around the threshold. 

To formally test whether the density of the running variable is continuous at the threshold, we 

use the local polynomial density estimator and test statistic as described in Cattaneo et al. 

(2018). Figure D–1 in the appendix plots the estimated empirical density. This graphical 

representation
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of the test clearly shows that the running variable is continuous at the threshold. Therefore, the 

test’s null hypothesis is that the running variable’s density is continuous at the threshold; we fail 

to reject the null hypothesis at conventional levels (p-value = 0.132). 

A second manipulation test is whether the predetermined characteristics of people change 

discontinuously at the threshold. As Cattaneo et al. (2020) point out, one of the most critical RD 

falsification tests involves examining whether treated units are similar to control units in terms 

of observable characteristics near the cutoff. This test follows from the idea that if people cannot 

precisely manipulate the running variable, there should be no systematic differences between 

individuals with similar values for this variable. We focus on 15 covariates previously used in 

the analysis, all measured at the baseline. To test whether the predetermined covariates are 

continuous at the threshold, we estimate equation 2 using each of the predetermined covariates 

as the outcome. The estimation results are plotted in Figure D–2 in the Appendix. All the 

variables are statistically not different from zero (at 95% confidence level), except for alcohol 

use. These results indicate that the predetermined covariates are continuous at the threshold. In 

addition, we do not observe any apparent discontinuity at the cutoff when we plot each covariate 

as a function of the running variable in Figure D–3 in the Appendix. 

In general, these empirical results are consistent with the idea that the institutional setup of 

Pensión 65 makes it difficult for people to get around the thresholds that classify households as 

extremely poor. Consequently, we conclude that manipulation of the running variable is 

unlikely in this setting. 

 
6.2 Placebo cutoffs 

We assess the validity of the RDD for estimating the impact of the programme at placebo 

thresholds. To carry out this test, we choose the following thresholds located equidistantly 

around the actual eligibility cutoff: -0.06, -0.04, -0.02, 0.02, 0.04 and 0.06. Next, we estimate 

the impact of the programme at placebo thresholds and report the results in Table D–1 in the 

Appendix. We find no evidence of programme treatment effects at any of the placebo 

thresholds. In all cases, the placebo estimates are statistically indistinguishable from zero at the 

usual levels of significance. We conclude that the mortality probability and hazard function 

only change discontinuously at the centred zero threshold. 

 
6.3 Sensitivity to observations near the cutoff 

Another falsification procedure seeks to investigate how sensitive the results are to the response 

of units that are located very close to the cutoff. The idea is that the empirical effects should not 

be drastically determined by few observations that are very close to the cutoff. Cattaneo et al. 

(2020) propose checking the sensitivity of the results to the exclusion of these few observations 

(known as the “donut hole approach”). The authors point out that this strategy is also helpful to 

assess the sensitivity of the results to the unavoidable extrapolation applied in local polynomial
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estimation; the reason being that the few observations nearest to the cutoff are likely to be 

of considerable influence when fitting the estimation. We choose the following bandwidths 

located equidistantly around the actual eligibility threshold: 0.002, 0.004, 0.006, 0.008 and 

0.01. We then estimate the impact, excluding the observations that are in these intervals, and 

report the results in Table D–2 in the Appendix. In general, we observe that the exclusion of 

these observations does not alter the conclusions of the analysis, either in the linear model or in 

the survival model. 

 
6.4 Robustness analysis 

We analyse the sensitivity of our results to different sizes of bandwidths and different periods 

to evaluate mortality and different model specifications. Figures D–4 and D–5 in the Appendix 

show the ITT effects, considering alternative bandwidths both for linear and survival models. 

We observe that the estimates are statistically significant and negative, yet the magnitude of the 

effect is smaller for wider bandwidths. Figure D–6 in the Appendix shows the estimated ITT 

effects on mortality for different time windows. There are no statistically significant effects for 

one or two years of observed mortality, but the effects start to be significant after the third year. 

In fact, there are no significant differences for the effect on mortality on the eligible population 

after the third year of observation. Lastly, Figure D–7 in the Appendix plots the ITT effects for 

different polynomial orders. Interestingly, the negative effect of the programme on mortality 

remains in all these specifications. 

 
7 Conclusions 

This paper details a study into the effect of Peru’s social pension programme, Pensión 65, on 

the mortality rate of elderly poor people. As the programme provides pensions to individuals 

aged 65 and above who do not have any other pension benefits and live in households classified 

as extreme poor by the official targeting welfare index, we are able to exploit a discontinuity 

generated by this index. This discontinuity arises when eligible and ineligible individuals have 

an index just below or above the official eligibility cutoff point. Therefore, we estimate 

intention-to-treat effects in a regression discontinuity setting. 

Some important features of our sample are that we use a survey fielded at the beginning of 

the programme rollout among individuals who had not been programme recipients; in other 

words, we use baseline data. This survey was intentionally designed to apply a regression 

discontinuity design and estimate the causal effects of the programme in a follow-up survey. 

The sample framework was designed to include only people located very close to the eligibility 

threshold, both the eligible and ineligible. We matched each individual in our sample to 

administrative records for the programme and mortality records from the national population 

register for the 2012-2019 period.
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Analysing mortality over 7 years, we find that the programme can reduce the mortality rate 

of eligible individuals by about 11.4 percentage points. Furthermore, we compute that Pensión 

65 could increase the life expectancy of eligible individuals by one year. The estimated 

monetary cost associated with the improvement in life expectancy is much lower than the value 

of a statistical life in Peru (the cost being 19-33% of VSL), implying that the policy is cost 

effective. The estimated mortality–income elasticity is somewhat higher than the values reported 

in other papers studying the mortality effects of social pensions. However, it should be noted 

that we have a larger period of observed mortality and the focus of our analysis is on very poor 

elderly people who have faced various deprivations during their lifetime, including limited 

access to healthcare, nutrition and education. All these features lead to a high mortality risk, so 

that the effect of the pension could be very important (and more elastic) in preventing death for 

the very poor.
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A Definition of variables 

 
Table A–1: Definition of variables 

 
Variable Definition 

 

High blood pressure It takes value 1 if the systolic blood pressure is greater than or equal to 

140 (mm Hg) or if diastolic blood pressure is greater than or equal to 

90 (mm Hg), and 0 otherwise. 

Anaemia It takes value 1 if the individual has anaemia, and 0 otherwise. The 

anaemia condition is determined according to haemoglobin levels 

analysed from blood samplings taken during the interview. 

Weight Body weight in kilograms. 

Abdominal obesity It takes value 1 if the waist measure is larger than the cutoffs that 

indicate obesity according to the norms set up by the Latin American 

Diabetes Association (see ALAD 2010 and Pajuelo-Ramirez et al. 

2019), and 0 otherwise. These cutoffs are 94 cm and 88 cm for men 

and women, respectively. 

Arm span Arm span in centimetres. 

Mid-upper arm 

circumference 

(MUAC) 

Calf circumference 

(CC) 

Upper middle arm circumference in centimetres. 

 
 

Calf circumference in centimetres. 

Cognitive functioning It is a score (0-13) computed from the points assigned to the correct 

answers to four questions. Orientation: day of the week, day of the 

month, month, and year. Immediate memory: recall of three words read 

by the interviewer. Delayed memory: recall of the exact words again 

later in the interview. Command: three actions that the respondent must 

complete in order: "I will give you a piece of paper. Take this in your 

right hand, fold it in half with both hands and place it on your legs". 

Chronic diseases It is the total number of chronic medically diagnosed diseases reported 

by the individual from a list of 13 diseases. 

Health today It takes value 1 if the individual rates her health as good or very good 

from a 1-4 Likert scale, and 0 otherwise. 

Health compared to 

last year 

 
Health compared to 

others 

It takes value 1 if the individual rates her health as the same, better or 

much better with respect to last year from a 1-5 Likert scale, and 0 if 

she rates her health as worse or much worse. 

It takes value 1 if the individual rates her health as good or very good 

with respect to other people of similar age from a 1-4 Likert scale, and 

0 otherwise. 

Subjective health index It is an index computed with the three subjective health questions 

mentioned before. First, we standardised the original variables 

containing their Likert-scale values (mean and standard deviation 

equal to 0 and 1) and sum them up. Second, we re-scale this value to 

obtain an index ranging between 0 and 1. Thus, larger values imply 

better perceived health. 
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Table A–2: Definition of variables 

 
Variable Definition 

Mini Nutritional 

Assessment (MNA) 

score 

It is a score measuring the quality of diet and the risks of under-nutrition 

and malnutrition among old individuals. The scores originally ranged 

from 0 to 30, but the available information in ESBAM allows us to 

compute a score ranging between 0 and 19. The information to 

compute the MNA includes variables indicating whether the individual 

i) eats three or more meals per day; ii) eats dairy products at least once 

a day; iii) eats fruits and vegetables at least twice a day; iv) drinks less 

than three glasses of water per day; v) eats eggs, beans or legumes at 

least once a week; vi) eats meat, fish or poultry at least three times a 

week. 

Alcohol It takes value 1 if the individual drank alcohol at least once during the 

three months previous to the interview, and 0 otherwise. It is measured 

in the baseline ESBAM survey, but not on the follow-up survey. 

Tobacco It takes value 1 if the individual smoked during the month previous to 

the interview (or before), and 0 otherwise. It is measured in the 

baseline ESBAM survey, but not on the follow-up survey. 

Depression symptoms It is the number of depression symptoms (score 0-9) measured with the 

geriatric depression scale from Sheikh and Yesavage (1986). This was 

measured only in the follow-up survey. 

Juntos It takes value 1 if the individual declared the household is the recipient 

of the conditional transfer program Juntos, and 0 otherwise. 

Attended health centre  It takes value 1 if the individual who had any disease or symptom in the 

last month went to a health centre to treat them, and 0 otherwise. The 

value is set to missing for people who had no any disease in the last 

month. 

Individual health 

expenditure 

Individual medicine 

expenditure 

Expenditure (Soles per month) used by the individual in health 

services. 

Expenditure (Soles per month) used by the individual to buy 

medicines. 

Working hours Total number of hours worked in the previous week, including main 

and secondary occupations. 

Working It takes value 1 if the individual worked the previous week, and 0 

otherwise. 

Household expenditure Total household expenditure (Soles per month). 

Household food 

expenditure 

Number of household 

members 

Household expenditure on food (Soles per month). 

 
It is the number of members residing permanently in the household. 
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B Descriptive tables and figures 

 

 

 

 

 

 

Figure B–1: National distribution of the centred SISFOH score 
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Notes: This figure plots the national distribution of the running variable, that is the SISFOH score 

minus eligibility cutoffs (histogram bars). The vertical red lines indicate the maximum and minimum 

values (bandwidth) found for the running variable in the ESBAM sample. The sampling framework 

correspond to observations located within this bandwidth. The data come from the SISFOH census of 

2012/2013.
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Figure B–2: Cumulative distribution of household income per capita in Peru and ESBAM 
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Notes: The figure plots the cumulative distribution of monetary gross household income per capita in 

Peru and the ESBAM Sample. The national income distribution is computed by exploiting the National 

Household Survey (ENAHO) collected in 2012. Income is transformed as log(1+income) for 

visualisation purposes. 
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Table B–1: Distribution of observations in sample 
 

Overall Eligible Ineligible 
 

 Mean SD N  Mean SD N  Mean SD N 

Key variable 
         

Dead (0/1) 0.174 0.379 3,885 0.171 0.377 2,525 0.180 0.384 1,360 

Running variable -0.066 0.161 3,885 -0.171 0.069 2,525 0.129 0.082 1,360 

Treated (0/1) 0.707 0.455 3,885 0.903 0.296 2,525 0.343 0.475 1,360 

Covariates            

Male (0/1) 0.545 0.498 3,885 0.557 0.497 2,525 0.524 0.500 1,360 

Age 71.646 4.396 3,885 71.723 4.365 2,525 71.503 4.453 1,360 

High blood pressure (0/1) 0.338 0.473 3,835 0.347 0.476 2,500 0.320 0.467 1,335 

Anaemia (0/1) 0.315 0.465 3,818 0.319 0.466 2,488 0.307 0.461 1,330 

Weight (Kg.) 55.560 10.518 3,826 55.004 10.345 2,495 56.603 10.762 1,331 

Abdominal obesity (0/1) 0.341 0.474 3,885 0.313 0.464 2,525 0.391 0.488 1,360 

Arm span (cm.) 155.932 10.787 3,838 155.801 10.871 2,501 156.179 10.628 1,337 

Mid-upper arm circum. (cm.) 26.220 3.242 3,838 26.085 3.149 2,500 26.471 3.398 1,338 

Calf circum. (cm.) 31.764 3.053 3,832 31.680 2.991 2,497 31.920 3.162 1,335 

Cognitive functioning (0-13) 10.740 2.035 3,817 10.767 2.044 2,480 10.692 2.019 1,337 

Chronic diseases (0-13) 1.040 1.322 3,885 1.028 1.315 2,525 1.062 1.334 1,360 

Good health (0/1) 0.570 0.495 3,866 0.564 0.496 2,512 0.582 0.493 1,354 

MNA score (0-19) 11.809 2.712 3,760 11.722 2.652 2,451 11.973 2.814 1,309 

Alcohol (0/1) 0.195 0.396 3,881 0.183 0.387 2,522 0.217 0.412 1,359 

Tobacco (0/1) 0.200 0.400 3,869 0.207 0.405 2,515 0.186 0.389 1,354 

Juntos (0/1) 0.088 0.284 3,885 0.080 0.271 2,525 0.104 0.305 1,360 

Notes: The sample is composed of individuals observed in the baseline of the 2012 ESBAM survey. After dropping observations with inconsistent 

information or missing key information, the sample size is set to 3,885 individuals.
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Table B–2: Distribution of observations in optimal selected sample 
 

Overall Eligible Ineligible 
 

 Mean SD N  Mean SD N  Mean SD N 

Key variable 
         

Dead (0/1) 0.169 0.375 1,577 0.158 0.365 682 0.177 0.382 896 

Running variable 0.012 0.082 1,577 -0.074 0.036 682 0.077 0.032 896 

Treated (0/1) 0.602 0.490 1,577 0.894 0.308 682 0.379 0.486 896 

Covariates            

Male (0/1) 0.545 0.498 1,577 0.557 0.497 682 0.536 0.499 896 

Age 71.458 4.354 1,577 71.509 4.270 682 71.418 4.418 896 

High blood pressure (0/1) 0.341 0.474 1,559 0.403 0.491 677 0.293 0.455 882 

Anaemia (0/1) 0.302 0.459 1,548 0.283 0.451 669 0.316 0.465 879 

Weight (Kg.) 56.082 10.532 1,555 56.894 10.714 673 55.462 10.354 882 

Abdominal obesity (0/1) 0.355 0.479 1,577 0.383 0.486 682 0.334 0.472 896 

Arm span (cm.) 156.453 10.407 1,560 156.789 10.670 675 156.198 10.200 885 

Mid-upper arm circum. (cm.) 26.393 3.255 1,560 26.921 3.153 675 25.990 3.276 885 

Calf circum. (cm.) 31.886 3.087 1,556 32.235 3.103 673 31.619 3.050 883 

Cognitive functioning (0-13) 10.748 2.041 1,554 10.991 1.944 673 10.562 2.094 881 

Chronic diseases (0-13) 0.991 1.296 1,577 1.098 1.374 682 0.910 1.228 896 

Good health (0/1) 0.576 0.494 1,574 0.589 0.492 681 0.567 0.496 893 

MNA score (0-19) 11.903 2.757 1,522 12.161 2.544 655 11.708 2.893 867 

Alcohol (0/1) 0.195 0.396 1,576 0.181 0.385 681 0.206 0.404 895 

Tobacco (0/1) 0.196 0.397 1,574 0.185 0.389 681 0.204 0.403 893 

Juntos (0/1) 0.117 0.322 1,577 0.123 0.329 682 0.113 0.316 896 

Notes: The sample is composed of individuals observed in the baseline of the 2012 ESBAM survey within the optimal bandwidth of +/-0.145 

around the eligibility threshold, resulting in a sample size of 1,578 individuals. The optimal bandwidth is obtained from the point estimation 

model as suggested by Calonico et al. (2015)
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Table B–3: Cumulative number of Pensión 65 recipients 
 

Year 
Survived 
eligibles 

Survived 
ineligibles 

Num. of 
recipients 

RD 
Estim. S.E. 95% C.I. 

2013 2,475 1,338 1,963 0.689 0.029 0.632 0.745 

2014 2,427 1,307 2,191 0.822 0.023 0.777 0.866 

2015 2,370 1,272 2,243 0.852 0.020 0.812 0.891 

2016 2,316 1,237 2,342 0.787 0.025 0.738 0.836 

2017 2,242 1,194 2,567 0.602 0.033 0.537 0.667 

2018 2,172 1,149 2,674 0.525 0.033 0.461 0.589 

2019 2,093 1,115 2,746 0.472 0.034 0.405 0.539 

Notes: The first and second columns indicate the number of individuals who have survived until 
December of each year by the eligibility condition measured at the baseline (i.e. according to the 
SISFOH rules of 2012). The third column shows the accumulated number of individuals each 
year who have received the transfer from the programme, regardless of their survival or disease 
condition. The RD estimator is computed as the change in the intercept of two estimated linear 
regressions that fit separately on each side of the eligibility cutoff.
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Figure B–3: Probability of being a Pensión 65 recipient at different evaluation periods 
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Notes: The graphs plot the probability of receiving Pensión 65 anytime in the indicated period as a 

function of the running variable (SISFOH score minus eligibility cutoffs). The support of the running 

variable has been partitioned into exclusive bins. The number of bins is selected optimally to minimise 

the integrated mean square error of the underlying regression function, and the location is based on 

quantile spaced method using spacings estimators as suggested in Calonico et al. (2015). The square 

points indicate the local mean of the outcome at the mid-point of each bin. The bars represent the 95% 

confidence intervals of the local means. The solid lines are linear regressions that fit separately on each 

side of the threshold. Observations to the left (right) of the vertical dashed line are eligible (ineligible) 
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to the programme. 
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C Tables and figures of survival models 

 
Figure C–1: Intention-to-treat in survival model 
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Notes: The graph plots the log of the hazard ratio of mortality observed over 7 years as a function of the 

running variable (SISFOH score minus eligibility cutoffs). The parametric model follows a Gompertz 

distribution. The lines are linear regressions that fit separately on each threshold side. Observations to 

the left (right) of the vertical dashed line are eligible (ineligible) to the programme. 

 

 

 

 

Table C–1: Effect of Pensión 65 on log of mortality hazard rate under alternative functions 
 

Model ITT Estimator 95% C.I. 

Cox -0.853 -1.620 -0.086 

Exponential -0.838 -1.470 -0.206 

Weibull -0.847 -1.483 -0.210 

Notes: The table reports the ITT estimates for the log of 
mortality hazard rate observed over 7 years (equation 4). The 
estimators correspond to a non-parametric version (Cox 
model) and two parametric models (Exponential and Weibull). 
The models use triangular kernel, local linear polynomial and 
the optimal bandwidth for point estimation as suggested by 
Calonico et al. (2015) (obtained in the Table 2). 
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Table C–2: Effect of Pensión 65 on log of mortality hazard rate including covariates 
 

 (1) (2) (3) (4) (5) 

ITT -0.846*** -0.782** -0.648* -0.771** -0.779** 
 (0.324) (0.334) (0.340) (0.347) (0.347) 

Male  0.333** 0.524*** 0.540*** 0.570*** 
  (0.136) (0.196) (0.202) (0.208) 

Age  0.112*** 0.090*** 0.087*** 0.089*** 
  (0.015) (0.016) (0.016) (0.016) 

High blood pressure   0.369** 0.329** 0.329** 
   (0.161) (0.164) (0.164) 

Anaemia   0.230 0.277* 0.285* 
   (0.154) (0.155) (0.156) 

Weight   0.036** 0.045*** 0.044*** 
   (0.015) (0.015) (0.015) 

Abdominal obesity   0.328 0.369* 0.380* 
   (0.216) (0.223) (0.223) 

Arm span   -0.001 -0.007 -0.007 
   (0.010) (0.011) (0.011) 

Mid-upper arm circ. (MUAC)   -0.128*** -0.113** -0.113** 
   (0.044) (0.044) (0.044) 

Calf circumference (CC)   -0.108*** -0.090** -0.091** 
   (0.035) (0.036) (0.036) 

Cognitive functioning   -0.111*** -0.084** -0.084** 
   (0.034) (0.035) (0.035) 

Chronic diseases    0.046 0.045 
    (0.055) (0.055) 

Health today    -0.089 -0.094 
    (0.164) (0.165) 

Nutrition score (MNA)    -0.100*** -0.100*** 
    (0.036) (0.036) 

Alcohol     0.073 
     (0.197) 

Tobacco     -0.144 
     (0.188) 

Constant -3.768*** -12.084*** -5.046** -4.481** -4.585** 
 (0.243) (1.174) (2.122) (2.209) (2.205) 

Observations 1,577 1,577 1,513 1,483 1,481 

Notes: The table reports the ITT estimates for the log of mortality hazard rate observed over 7 
years (equation 4), including covariates related to the mortality risk. The estimator corresponds to 
a Gompertz-type model. The models use triangular kernel, local linear polynomial and the optimal 
bandwidth for point estimation as suggested by Calonico et al. (2015) (obtained in Table 2). The 
standard errors are indicated in parenthesis. *p < 0.10, **p < 0.05, and ***p < 0.01 indicate 
statistically significance levels.
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Figure C–2: Heterogeneous effects on the log of mortality hazard rate 
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D Sensitivity and robustness checks 

 
Figure D–1: Histogram and manipulation test based on density discontinuity 
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Notes: Panels A and B plot the histogram and empirical density of the running variable 

(SISFOH’s index minus thresholds). Panel (b) corresponds to the test proposed by Cattaneo 

et al. (2018), using a bandwidth size of 0.16 points of the running variable on the left side 

of the cutoff and a bandwidth size of 0.10 on the right side of the cutoff. Also, a local cubic 

approximation is used in density estimators and bias-corrected density estimators. No 

significant discontinuity is found (pvalue=0.1323 under the null hypothesis that density is 

continuous at the threshold). 
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Figure D–2: Balance of covariates 
 
 

.6 

 
.4 

 
.2 

 
0 

 
-.2 

 
-.4 

 
-.6 

 
 
 
 
 
 
 
 
 

Notes: This figure plots the ITT estimates of equation 2 using the listed covariates as dependent 

variables instead of mortality. Variables are standardised to facilitate comparison. All the estimated 

models use the triangular kernel, local linear polynomial, and the optimal bandwidth for point 

estimation as suggested by Calonico et al. (2015) (obtained in Table 2). The vertical lines indicate 95% 

confidence intervals.
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Figure D–3: Continuity in observables 
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Notes: The graph plots the listed covariates as a function of the running variable (SISFOH score minus eligibility cutoffs). The support of the 

running variable has been partitioned into exclusive bins. The number of bins is selected optimally to minimise the integrated mean square error 

of the underlying regression function, and the location is based on quantile spaced method using spacings estimators as suggested in Calonico 

et al. (2015). The square points indicate the local mean of the outcome at the mid-point of each bin. The bars represent the 95% confidence 

intervals of the local means. The solid lines are linear regressions that fit separately on each side of the threshold. Observations to the left 

(right) of the vertical dashed line are eligible (ineligible) to the programme. 
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Table D–1: ITT effects under alternative cutoffs 
 

Alternative Optimal OLS model Survival model 

cutoffs (x100) bandwidth ITT P-value  ITT P-value 

-6 0.209 0.029 0.515  0.212 0.459 

-4 0.145 -0.010 0.922  -0.027 0.969 

-2 0.116 -0.069 0.115  -0.542 0.108 

0 0.145 -0.114 0.011  -0.846 0.009 

2 0.344 -0.033 0.255  -0.225 0.243 

4 0.213 -0.027 0.544  -0.180 0.522 

6 0.238 -0.038 0.403  -0.259 0.374 

Notes: The table reports the ITT effects estimated for equations 2 and 4 in alternative 
cutoffs. The models use triangular kernel and local linear polynomial, and use the optimal 
bandwidth for point estimation as suggested by Calonico et al. (2015) obtained in linear 
regression. The standard errors are clustered by the Primary Sampling Unit (PSU) of the 
sampling framing.
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Table D–2: Sensitivity to observations near the cutoff (donut hole approach) 
 

Donut-hole Excluded Obs. OLS Model Survival Model 

Radius (x1000) Left Right  ITT p-value  ITT p-value 

0 0 0  -0.114 0.011  -0.846 0.009 

2 7 0  -0.118 0.009  -0.875 0.008 

4 11 0  -0.114 0.046  -0.839 0.011 

6 16 18  -0.103 0.033  -0.761 0.027 

8 16 20  -0.108 0.027  -0.790 0.022 

10 17 21  -0.110 0.026  -0.796 0.022 

Notes: The table reports the ITT effects estimated for equations 2 and 4 excluding observations around 
cutoff. All the estimated models use triangular kernel, and the optimal bandwidth for point estimation 
as suggested by Calonico et al. (2015) (obtained in the Table 2). The standard errors are clustered by 
the Primary Sampling Unit (PSU) of the sampling framing.
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Figure D–4: ITT effects by alternative bandwidths 
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Notes: This figure plots the ITT effects estimated for equation 2 for alternative bandwidths. All the estimated 

models use triangular kernel and local linear polynomial. The horizontal axis shows the percentage of the 

sample employed for each estimated model. CCT corresponds to the optimally estimated bandwidth 

proposed by Calonico et al. (2015). The vertical lines indicate 95% confidence intervals. 

 
 

Figure D–5: ITT effects on the log of mortality hazard ratio by alternative bandwidths 
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estimated bandwidth proposed by Calonico et al. (2015). The vertical lines indicate 95% confidence 

intervals. 
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Figure D–6: ITT effects by period of observed mortality 
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Notes: This figure plots the ITT effects estimated for equation 2 for alternative periods of observed 

mortality. The horizontal axis indicates the last year (December) of observed mortality, starting in 

December 2012. All the estimated models use the triangular kernel, local linear polynomial, and the 

optimal bandwidth for point estimation as suggested by Calonico et al. (2015) (obtained in Table 2). 

The vertical lines indicate 95% confidence intervals. 

IT
T

 



52  

Figure D–7: ITT estimator assuming different order of polynomials 
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Notes: This figure plots the ITT effects estimated for equation 2 for different order of polynomials. 

The support of the running variable has been partitioned into exclusive bins. The number of bins is 

selected optimally to minimise the integrated mean square error of the underlying regression function, 

and the location is based on quantile spaced method using spacings estimators as suggested in Calonico 

et al. (2015). The square points indicate the local mean of the outcome at the mid-point of each bin. The 

bars represent the 95% confidence intervals of the local means. The solid lines are linear regressions 

that fit separately on each side of the threshold. Observations to the left (right) of the vertical dashed 

line are eligible (ineligible) to the programme. 
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E Value of Statistical Life (VSL) 

 
Table E–1: Value of Statistical Life (VSL) estimations for Peru (2012) 

 

Study Features VSL (USD) 

Robinson et al. (2019) base=160; ε = 1.5 427,711 

Robinson et al. (2019) base=100, ε = 1.0 606,786 

Robinson et al. (2019) base=160, ε = 1.0 970,858 

Viscusi and Masterman (2017) ε = 1.0 1,044,306 

Sweis (2022) γ = 0.1 3,348,777 

Sweis (2022) γ = 1.0 362,030 

Sweis (2022) γ = 0.5 633,552 

Mardones and Riquelme (2018) predicted from other studies 451,746 

Notes: This table shows the Value of Statistical Life (VSL) estimated for Peru in different 
studies. All cases have been adapted to show the VSL in 2012 United States dollars. 
Robinson et al. (2019) extrapolate VSL estimates of USD using different base values and 
income elasticity (ε). The base value multiplies the Gross National Income (GNI) per capita, 
while the ε summarises the rate at which VSL changes with income. Viscusi and Masterman 
(2017) uses unitary income elasticity and their US estimate of VSL to compute VSL in 189 
countries. Sweis (2022) uses a consumption-health maximisation framework to measure the 
VSL in selected countries in order to measure the total value of loss from deaths caused by 
COVID-19. She presents estimates of VSL by different values of γ, which is the degree of 
homogeneity of the utility function (a smaller gamma implies more benefits to invest in 
health and survive longer), yet the author prefers γ = 0.5 to measure the value of COVID-19 
deaths. Mardones and Riquelme (2018) use VSL estimates from different studies to estimate 
the relationship between Gross Domestic Product (GDP) per capita and VSL, and then 
predict the VSL for selected Latin American countries.
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F Mechanisms 

 
Table F–1: ITT effects of Pensión 65 on various outcomes (2015 follow-up sample) 

 

All sample Bandwidth 0.1448 Non-parametric 

Outcomes Effect N Effect N Effect N 

High blood pressure 0.091 3,494 -0.175 1,414 -0.284* 1,235 

Anaemia -0.246*** 3,454 0.000 1,397 0.228 469 

Weight 0.127 3,478 -0.122 1,407 -0.294 644 

Abdominal obesity 0.118 3,512 -0.244* 1,424 -0.498* 473 

Arm span 0.014 3,481 -0.062 1,409 0.265 469 

Mid-upper arm circ. (MUAC) 0.322*** 3,496 0.086 1,415 0.250* 1,828 

Calf circumference (CC) 0.260*** 3,492 -0.117 1,415 -0.093 689 

Depression symptoms -0.237*** 3,511 -0.151 1,424 0.239 476 

Cognitive functioning 0.333*** 3,449 0.380*** 1,403 -0.058 443 

Chronic diseases 0.356*** 3,512 0.562*** 1,424 -0.052 449 

Nutrition score (MNA) 0.307*** 3,354 -0.015 1,355 -0.148 621 

Health today 0.131 3,506 0.226* 1,422 -0.008 481 

Health compared to last year 0.292*** 3,503 0.327** 1,422 0.267* 1,247 

Health compared to other people 0.197** 3,455 0.084 1,401 0.022 1,220 

Subjective health index 0.246*** 3,454 0.217 1,400 0.100 649 

Attended health centre 0.347*** 2,474 0.718*** 1,005 0.570** 476 

Indiv. health expenditure 0.106 3,512 0.173 1,424 0.157 1,856 

Indiv. medicine expenditure 0.120** 3,512 0.127 1,424 0.098 3,037 

Working hours -0.298*** 3,512 -0.108 1,424 -0.102 1,322 

Working -0.311*** 3,512 -0.094 1,424 -0.068 1,243 

Household expenditure 0.544*** 3,512 0.025 1,424 -0.071 1,322 

Household food expenditure 0.486*** 3,512 -0.109 1,424 -0.203 743 

Expenditure per capita 0.332*** 3,494 -0.233 1,416 -0.495 634 

Food expenditure per capita 0.382*** 3,494 -0.328** 1,416 -0.418* 654 

Number of household members 0.276*** 3,512 0.461*** 1,424 0.396*** 3,507 

Notes: The table reports the ITT effects of Pensión 65 on various outcomes measured during the follow-up survey 
fielded between July and September 2015. All the outcomes have been standardised to show mean equal to zero 
and standard deviation equal to one. From the 3,885 observations of our baseline, we found 3,514 individuals 
surveyed in the follow-up. The first column reports the ITT effects on all the 2015 sample, the third column reports 
the ITT effects when we use the bandwidth considered in our main analysis of mortality on the baseline sample 
(bandwidth equal to 0.1448) and kernel weights, and the fifth column shows the ITT effects when we use the non-
parametric approach suggested by Calonico et al. (2015) for each outcome (rdrobust with kernel weights and 
polynomial of degree one, and MSE-optimal bandwidths). The standard errors are clustered by the Primary 
Sampling Unit (PSU) of the sampling framing. *p < 0.10, **p < 0.05, and ***p < 0.01 indicate statistically 
significance levels based on those standard errors. 




