• español
    • English
  • Politics
  • English 
    • español
    • English
  • Login
View Item 
  •   Institutional Repository ULima
  • Artículos
  • 4. En conferencias y otros eventos
  • Ingeniería Industrial
  • View Item
  •   Institutional Repository ULima
  • Artículos
  • 4. En conferencias y otros eventos
  • Ingeniería Industrial
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Semantic Segmentation of Weeds and Crops in Multispectral Images by Using a Convolutional Neural Networks Based on U-Net

Thumbnail
View/Open
Descargar
(application/pdf: 49.99Kb)
Date
2020
Author(s)
Chicchón Apaza, Miguel Ángel
Bedón Monzón, Héctor Manuel
Metadata
Show full item record
Abstract
A first step in the process of automating weed removal in precision agriculture is the semantic segmentation of crops, weeds and soil. Deep learning techniques based on convolutional neural networks are successfully applied today and one of the most popular network architectures in semantic segmentation problems is U-Net. In this article, the variants in the U-Net architecture were evaluated based on the aggregation of residual and recurring blocks to improve their performance. For training and testing, a set of data available on the Internet was used, consisting of 60 multispectral images with unbalanced pixels, so techniques were applied to increase and balance the data. Experimental results show a slight increase in quality metrics compared to the classic U-Net architecture.
URI
https://hdl.handle.net/20.500.12724/10812
DOI
https://doi-org.ezproxy.ulima.edu.pe/10.1007/978-3-030-42520-3_38
How to cite
Chicchon Azapa, M. & Bedón Monzón, H. (2020). Semantic Segmentation of Weeds and Crops in Multispectral Images by Using a Convolutional Neural Networks Based on U-Net. Communications in Computer and Information Science. 473-485. https://link.springer.com/chapter/10.1007%2F978-3-030-42520-3_38
Publisher
Springer
Subject
Automatización
Agricultura
Redes neuronales artificiales
Automation
Agriculture
Artificial neural networks
Event
International Conference on Applied Technologies (ICAT)
Collections
  • Ingeniería Industrial [182]


Contact Us: [email protected]

Todos los derechos reservados. Diseñado por Chimera Software
 

 

Browse

All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsAuthors UlimaDocument typeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsAuthors UlimaDocument type

My Account

LoginRegister

Statistics

View Usage Statistics

Contact Us: [email protected]

Todos los derechos reservados. Diseñado por Chimera Software