Automated classification system of giant white corn using image processing and supervised techniques
Ver/
Gonzales_Asto_Gabriela.pdf
(application/pdf: 86.88Kb)
(application/pdf: 86.88Kb)
Fecha
2020Autor(es)
Asesor(es)
Metadatos
Mostrar el registro completo del ítemResumen
Nowadays, the use of artificial vision for classification in agricultural products has
proven to have a great impact on this field. The exportation of agricultural goods has
risen all over the world, consequently, that is the reason why exporting companies are
looking to automate their processes and artificial vision techniques seems a great niche.
This automation will allow an improvement in their production performance by
diminishing the time and cost of their processes. While having a sound quality product
in less time, improved precision and with no extensive manipulation of the product. In
this article, we aim to offer a low cost alternative to this procedure oriented to the
classification of Peruvian white corn by proposing an algorithm for the segmentation
and recognition of images using computer vision techniques.
Cómo citar
Gonzales Asto, G. (2020). Automated classification system of giant white corn using image processing and supervised techniques [Tesis para optar el Título Profesional de Ingeniero de Sistemas, Universidad de Lima]. Repositorio institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/12722Editor
Universidad de LimaCategoría / Subcategoría
Ingeniería de sistemas / Diseño y métodosColeccion(es)
- Tesis [52]
El ítem tiene asociados los siguientes ficheros de licencia: