Mostrar el registro sencillo del ítem
Automated classification system of giant white corn using image processing and supervised techniques
dc.contributor.advisor | Gutiérrez Cárdenas, Juan Manuel | |
dc.contributor.author | Gonzales Asto, Gabriela | |
dc.date.accessioned | 2021-03-17T03:16:39Z | |
dc.date.available | 2021-03-17T03:16:39Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Gonzales Asto, G. (2020). Automated classification system of giant white corn using image processing and supervised techniques [Tesis para optar el Título Profesional de Ingeniero de Sistemas, Universidad de Lima]. Repositorio institucional de la Universidad de Lima. https://hdl.handle.net/20.500.12724/12722 | es_PE |
dc.identifier.uri | https://hdl.handle.net/20.500.12724/12722 | |
dc.description.abstract | Nowadays, the use of artificial vision for classification in agricultural products has proven to have a great impact on this field. The exportation of agricultural goods has risen all over the world, consequently, that is the reason why exporting companies are looking to automate their processes and artificial vision techniques seems a great niche. This automation will allow an improvement in their production performance by diminishing the time and cost of their processes. While having a sound quality product in less time, improved precision and with no extensive manipulation of the product. In this article, we aim to offer a low cost alternative to this procedure oriented to the classification of Peruvian white corn by proposing an algorithm for the segmentation and recognition of images using computer vision techniques. | en_EN |
dc.format | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Universidad de Lima | |
dc.rights | info:eu-repo/semantics/restrictedAccess | * |
dc.source | Repositorio Institucional - Ulima | es_PE |
dc.source | Universidad de Lima | es_PE |
dc.subject | Maíz | es_PE |
dc.subject | Algoritmos computacionales | es_PE |
dc.subject | Proceso de imágenes | |
dc.subject | Corn | |
dc.subject | Computer algorithms | |
dc.subject | Image processing | |
dc.subject.classification | Ingeniería de sistemas / Diseño y métodos | es_PE |
dc.title | Automated classification system of giant white corn using image processing and supervised techniques | es_PE |
dc.type | info:eu-repo/semantics/bachelorThesis | |
thesis.degree.discipline | Ingeniería de sistemas | es_PE |
thesis.degree.grantor | Universidad de Lima. Facultad de Ingeniería y Arquitectura | es_PE |
thesis.degree.level | Título profesional | es_PE |
thesis.degree.name | Ingeniero de sistemas | es_PE |
dc.publisher.country | PE | |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#2.02.04 | es_PE |
renati.author.dni | 44202612 | |
renati.advisor.orcid | https://orcid.org/0000-0003-2566-4690 | |
renati.advisor.dni | 29515539 | |
renati.juror | Guzman-Jimenez, Rosario-Marybel | |
renati.juror | Ayma-Quirita, Victor-Hugo | |
renati.juror | Ramos-Ponce, Oscar-Efrain | |
renati.level | http://purl.org/pe-repo/renati/level#tituloProfesional | * |
renati.type | https://purl.org/pe-repo/renati/type#tesis | * |
renati.discipline | 612076 | |
dc.contributor.student | 2, R, S |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Tesis [52]