• español
    • English
  • Politics
  • English 
    • español
    • English
  • Login
View Item 
  •   Institutional Repository ULima
  • Artículos
  • 4. En conferencias y otros eventos
  • Ingeniería de Sistemas
  • View Item
  •   Institutional Repository ULima
  • Artículos
  • 4. En conferencias y otros eventos
  • Ingeniería de Sistemas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Humpback Whale’s Flukes Segmentation Algorithms

Thumbnail
Date
2021
Author(s)
Castro Cabanillas, Andrea
Ayma Quirita, Víctor Hugo
Metadata
Show full item record
Abstract
Photo-identification consists of the analysis of photographs to identify cetacean individuals based on unique characteristics that each specimen of the same species exhibits. The use of this tool allows us to carry out studies about the size of its population and migratory routes by comparing catalogues. However, the number of images that make up these catalogues is large, so the manual execution of photo-identification takes considerable time. On the other hand, many of the methods proposed for the automation of this task coincide in proposing a segmentation phase to ensure that the identification algorithm takes into account only the characteristics of the cetacean and not the background. Thus, in this work, we compared four segmentation techniques from the image processing and computer vision fields to isolate whales’ flukes. We evaluated the Otsu (OTSU), Chan Vese (CV), Fully Convolutional Networks (FCN), and Pyramid Scene Parsing Network (PSP) algorithms in a subset of images from the Humpback Whale Identification Challenge dataset. The experimental results show that the FCN and PSP algorithms performed similarly and were superior to the OTSU and CV segmentation techniques.
URI
https://hdl.handle.net/20.500.12724/13950
DOI
https://doi.org/10.1007/978-3-030-76228-5_21
How to cite
Castro Cabanillas, A. & Ayma, V. H. (2021). Humpback Whale’s Flukes Segmentation Algorithms. En: J. A. Lossio-Ventura, J. C. Valverde-Rebaza, E. Díaz. & H. Alatrista-Salas (Eds.) Information Management and Big Data: Seventh Annual International Conference, SIMBig 2020, Lima, Peru, October 1–3, 2020, Proceedings, Communications in Computer and Information Science (vol. 1410, pp. 291-303). Springer. https://doi.org/10.1007/978-3-030-76228-5_21
Publisher
Springer
Subject
Interpretación fotográfica
Visión por computadora
Photographic interpretation
Computer vision
ISSN
1865-0929
Event
Communications in Computer and Information Science
Collections
  • Ingeniería de Sistemas [73]


Contact Us: [email protected]

Todos los derechos reservados. Diseñado por Chimera Software
 

 

Browse

All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsAuthors UlimaDocument typeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsAuthors UlimaDocument type

My Account

LoginRegister

Statistics

View Usage Statistics

Contact Us: [email protected]

Todos los derechos reservados. Diseñado por Chimera Software