Show simple item record

dc.contributor.authorCastro Cabanillas, Andrea
dc.contributor.authorAyma Quirita, Víctor Hugo
dc.contributor.otherCastro Cabanillas, Andrea
dc.contributor.otherAyma Quirita, Víctor Hugo
dc.date.accessioned2021-08-24T19:20:22Z
dc.date.available2021-08-24T19:20:22Z
dc.date.issued2021
dc.identifier.citationCastro Cabanillas, A. & Ayma, V. H. (2021). Humpback Whale’s Flukes Segmentation Algorithms. En: J. A. Lossio-Ventura, J. C. Valverde-Rebaza, E. Díaz. & H. Alatrista-Salas (Eds.) Information Management and Big Data: Seventh Annual International Conference, SIMBig 2020, Lima, Peru, October 1–3, 2020, Proceedings, Communications in Computer and Information Science (vol. 1410, pp. 291-303). Springer. https://doi.org/10.1007/978-3-030-76228-5_21es_PE
dc.identifier.issn1865-0929
dc.identifier.urihttps://hdl.handle.net/20.500.12724/13950
dc.description.abstractPhoto-identification consists of the analysis of photographs to identify cetacean individuals based on unique characteristics that each specimen of the same species exhibits. The use of this tool allows us to carry out studies about the size of its population and migratory routes by comparing catalogues. However, the number of images that make up these catalogues is large, so the manual execution of photo-identification takes considerable time. On the other hand, many of the methods proposed for the automation of this task coincide in proposing a segmentation phase to ensure that the identification algorithm takes into account only the characteristics of the cetacean and not the background. Thus, in this work, we compared four segmentation techniques from the image processing and computer vision fields to isolate whales’ flukes. We evaluated the Otsu (OTSU), Chan Vese (CV), Fully Convolutional Networks (FCN), and Pyramid Scene Parsing Network (PSP) algorithms in a subset of images from the Humpback Whale Identification Challenge dataset. The experimental results show that the FCN and PSP algorithms performed similarly and were superior to the OTSU and CV segmentation techniques.es_PE
dc.formatapplication/pdf
dc.language.isoeng
dc.publisherSpringeres_PE
dc.relation.ispartofurn:issn:1865-0929
dc.rightsinfo:eu-repo/semantics/restrictedAccess*
dc.sourceRepositorio Institucional - Ulimaes_PE
dc.sourceUniversidad de Limaes_PE
dc.subjectInterpretación fotográficaes_PE
dc.subjectVisión por computadoraes_PE
dc.subjectPhotographic interpretationes_PE
dc.subjectComputer visiones_PE
dc.titleHumpback Whale’s Flukes Segmentation Algorithmses_PE
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.type.otherArtículo de conferencia en Scopus
ulima.areas.lineasdeinvestigacionRecursos naturales y medio ambiente / Medio ambientees_PE
dc.publisher.countryDEes_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.02.04
dc.identifier.doihttps://doi.org/10.1007/978-3-030-76228-5_21
ulima.autor.afiliacionCastro Cabanillas, Andrea (Universidad de Lima) (Scopus)es_PE
ulima.autor.afiliacionAyma Quirita, Víctor Hugo (Universidad de Lima) (Scopus)es_PE
ulima.autor.carreraCastro Cabanillas, Andrea (No figura en la lista del año 2020)es_PE
ulima.autor.carreraAyma Quirita, Víctor Hugo (Ingeniería de Sistemas)es_PE
dc.identifier.scopusid2-s2.0-85111170665
dc.identifier.eventCommunications in Computer and Information Science


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record