• español
    • English
  • Políticas
  • español 
    • español
    • English
  • Acceder
Ver ítem 
  •   Repositorio Institucional ULima
  • Artículos
  • 4. En conferencias y otros eventos
  • Ingeniería de Sistemas
  • Ver ítem
  •   Repositorio Institucional ULima
  • Artículos
  • 4. En conferencias y otros eventos
  • Ingeniería de Sistemas
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Crack Detection in Oil Paintings Using Morphological Filters and K-SVD Algorithm

Thumbnail
Fecha
2022
Autor(es)
Rucoba Calderón, Carla Valeria
Ramos Ponce, Oscar Efrain
Gutiérrez Cárdenas, Juan Manuel
Metadatos
Mostrar el registro completo del ítem
Resumen
Cracks in oil paintings constitute an undesirable but unavoidable effect of time, deteriorating the painting quality. This work proposes a crack detection method that supports the physical restoration process of the artworks, providing a fissure map that allows the artist to visualize the pictorial layer and its flaws. This approach applies three image processing techniques to digitized oil paintings: oriented elongated filters, top-hat morphological filters and a K-SVD algorithm. Then, a post-processing stage based on K-Means is performed on the resulting binary maps to eliminate false positives. Finally, a pixel-by-pixel voting technique is applied to combine the binary maps. Our proposed framework has a better performance detecting craquelure when compared to other methods such as ADA Boost and convolutional neural networks. We obtained a recall of 0.8577, a probability of false alarm of 0.0779, a probability of false negatives of 0.1423, an accuracy of 0.7123, and an F1 value of 0.7783, which is amongst the best results for the state-of-the-art techniques.
URI
https://hdl.handle.net/20.500.12724/17547
DOI
https://doi.org/10.1007/978-3-031-04447-2_22
Cómo citar
Rucoba-Calderón, C., Ramos, E. & Gutiérrez-Cárdenas, J. (2022). Crack Detection in Oil Paintings Using Morphological Filters and K-SVD Algorithm. En J. A. Lossio-Ventura, J. Valverde-Rebaza, E. Díaz, D. Muñante, C. Gavidia-Calderon, A.D.B. Valejo & H. Alatrista-Salas (Eds.), Information Management and Big Data: Eighth Annual International Conference, SIMBig 2021, December 1-3, 2021, Proceedings, Communications in Computer and Information Science (vol. 1577, pp. 329-339). Springer. 10.1007/978-3-031-04447-2_22
Editor
Springer
Temas
Detectores
Pintura al óleo
Deterioro de materiales
Detectors
Oil painting
Deterioration of materials
ISSN
1865-0929
Evento
Communications in Computer and Information Science
Coleccion(es)
  • Ingeniería de Sistemas [73]


Contacto: [email protected]

Todos los derechos reservados. Diseñado por Chimera Software
 

 

Listar

Todo el RepositorioComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosTemasAsesoresAutores UlimaTipos de documentoEsta colecciónPor fecha de publicaciónAutoresTítulosTemasAsesoresAutores UlimaTipos de documento

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

Contacto: [email protected]

Todos los derechos reservados. Diseñado por Chimera Software