Mostrar el registro sencillo del ítem

dc.contributor.authorRucoba Calderón, Carla Valeria
dc.contributor.authorRamos Ponce, Oscar Efrain
dc.contributor.authorGutiérrez Cárdenas, Juan Manuel
dc.contributor.otherGutiérrez Cárdenas, Juan Manuel
dc.contributor.otherRamos Ponce, Oscar Efrain
dc.date.accessioned2023-02-07T15:19:11Z
dc.date.available2023-02-07T15:19:11Z
dc.date.issued2022
dc.identifier.citationRucoba-Calderón, C., Ramos, E. & Gutiérrez-Cárdenas, J. (2022). Crack Detection in Oil Paintings Using Morphological Filters and K-SVD Algorithm. En J. A. Lossio-Ventura, J. Valverde-Rebaza, E. Díaz, D. Muñante, C. Gavidia-Calderon, A.D.B. Valejo & H. Alatrista-Salas (Eds.), Information Management and Big Data: Eighth Annual International Conference, SIMBig 2021, December 1-3, 2021, Proceedings, Communications in Computer and Information Science (vol. 1577, pp. 329-339). Springer. 10.1007/978-3-031-04447-2_22es_PE
dc.identifier.issn1865-0929
dc.identifier.urihttps://hdl.handle.net/20.500.12724/17547
dc.description.abstractCracks in oil paintings constitute an undesirable but unavoidable effect of time, deteriorating the painting quality. This work proposes a crack detection method that supports the physical restoration process of the artworks, providing a fissure map that allows the artist to visualize the pictorial layer and its flaws. This approach applies three image processing techniques to digitized oil paintings: oriented elongated filters, top-hat morphological filters and a K-SVD algorithm. Then, a post-processing stage based on K-Means is performed on the resulting binary maps to eliminate false positives. Finally, a pixel-by-pixel voting technique is applied to combine the binary maps. Our proposed framework has a better performance detecting craquelure when compared to other methods such as ADA Boost and convolutional neural networks. We obtained a recall of 0.8577, a probability of false alarm of 0.0779, a probability of false negatives of 0.1423, an accuracy of 0.7123, and an F1 value of 0.7783, which is amongst the best results for the state-of-the-art techniques.es_PE
dc.formatapplication/pdf
dc.language.isoeng
dc.publisherSpringeres_PE
dc.relation.ispartofurn:issn:18650929
dc.relation.ispartofurn:isbn:978-303104446-5
dc.rightsinfo:eu-repo/semantics/restrictedAccess*
dc.sourceRepositorio Institucional - Ulimaes_PE
dc.sourceUniversidad de Limaes_PE
dc.subjectDetectoreses_PE
dc.subjectPintura al óleoes_PE
dc.subjectDeterioro de materialeses_PE
dc.subjectDetectorses_PE
dc.subjectOil paintinges_PE
dc.subjectDeterioration of materialses_PE
dc.titleCrack Detection in Oil Paintings Using Morphological Filters and K-SVD Algorithmes_PE
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.type.otherArtículo de conferencia en Scopus
ulima.areas.lineasdeinvestigacionProductividad y empleo / Innovación: tecnologías y productoses_PE
dc.publisher.countryDEes_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.02.04
dc.identifier.doihttps://doi.org/10.1007/978-3-031-04447-2_22
dc.contributor.studentRucoba Calderón, Carla Valeria (Ingeniería de Sistemas)
ulima.cat9
ulima.autor.afiliacionGutiérrez Cárdenas, Juan Manuel (Universidad de Lima) (Scopus)es_PE
ulima.autor.afiliacionRamos Ponce, Oscar Efrain (Universidad de Lima) (Scopus)es_PE
ulima.autor.carreraGutiérrez Cárdenas, Juan Manuel (Ingeniería de Sistemas)es_PE
ulima.autor.carreraRamos Ponce, Oscar Efrain (Ingeniería de Sistemas)es_PE
dc.identifier.scopusid2-s2.0-85128957811
dc.identifier.eventCommunications in Computer and Information Science


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem