Mostrar el registro sencillo del ítem
Crack Detection in Oil Paintings Using Morphological Filters and K-SVD Algorithm
dc.contributor.author | Rucoba Calderón, Carla Valeria | |
dc.contributor.author | Ramos Ponce, Oscar Efrain | |
dc.contributor.author | Gutiérrez Cárdenas, Juan Manuel | |
dc.contributor.other | Gutiérrez Cárdenas, Juan Manuel | |
dc.contributor.other | Ramos Ponce, Oscar Efrain | |
dc.date.accessioned | 2023-02-07T15:19:11Z | |
dc.date.available | 2023-02-07T15:19:11Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Rucoba-Calderón, C., Ramos, E. & Gutiérrez-Cárdenas, J. (2022). Crack Detection in Oil Paintings Using Morphological Filters and K-SVD Algorithm. En J. A. Lossio-Ventura, J. Valverde-Rebaza, E. Díaz, D. Muñante, C. Gavidia-Calderon, A.D.B. Valejo & H. Alatrista-Salas (Eds.), Information Management and Big Data: Eighth Annual International Conference, SIMBig 2021, December 1-3, 2021, Proceedings, Communications in Computer and Information Science (vol. 1577, pp. 329-339). Springer. 10.1007/978-3-031-04447-2_22 | es_PE |
dc.identifier.issn | 1865-0929 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12724/17547 | |
dc.description.abstract | Cracks in oil paintings constitute an undesirable but unavoidable effect of time, deteriorating the painting quality. This work proposes a crack detection method that supports the physical restoration process of the artworks, providing a fissure map that allows the artist to visualize the pictorial layer and its flaws. This approach applies three image processing techniques to digitized oil paintings: oriented elongated filters, top-hat morphological filters and a K-SVD algorithm. Then, a post-processing stage based on K-Means is performed on the resulting binary maps to eliminate false positives. Finally, a pixel-by-pixel voting technique is applied to combine the binary maps. Our proposed framework has a better performance detecting craquelure when compared to other methods such as ADA Boost and convolutional neural networks. We obtained a recall of 0.8577, a probability of false alarm of 0.0779, a probability of false negatives of 0.1423, an accuracy of 0.7123, and an F1 value of 0.7783, which is amongst the best results for the state-of-the-art techniques. | es_PE |
dc.format | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer | es_PE |
dc.relation.ispartof | urn:issn:18650929 | |
dc.relation.ispartof | urn:isbn:978-303104446-5 | |
dc.rights | info:eu-repo/semantics/restrictedAccess | * |
dc.source | Repositorio Institucional - Ulima | es_PE |
dc.source | Universidad de Lima | es_PE |
dc.subject | Detectores | es_PE |
dc.subject | Pintura al óleo | es_PE |
dc.subject | Deterioro de materiales | es_PE |
dc.subject | Detectors | es_PE |
dc.subject | Oil painting | es_PE |
dc.subject | Deterioration of materials | es_PE |
dc.title | Crack Detection in Oil Paintings Using Morphological Filters and K-SVD Algorithm | es_PE |
dc.type | info:eu-repo/semantics/conferenceObject | |
dc.type.other | Artículo de conferencia en Scopus | |
ulima.areas.lineasdeinvestigacion | Productividad y empleo / Innovación: tecnologías y productos | es_PE |
dc.publisher.country | DE | es_PE |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#2.02.04 | |
dc.identifier.doi | https://doi.org/10.1007/978-3-031-04447-2_22 | |
dc.contributor.student | Rucoba Calderón, Carla Valeria (Ingeniería de Sistemas) | |
ulima.cat | 9 | |
ulima.autor.afiliacion | Gutiérrez Cárdenas, Juan Manuel (Universidad de Lima) (Scopus) | es_PE |
ulima.autor.afiliacion | Ramos Ponce, Oscar Efrain (Universidad de Lima) (Scopus) | es_PE |
ulima.autor.carrera | Gutiérrez Cárdenas, Juan Manuel (Ingeniería de Sistemas) | es_PE |
ulima.autor.carrera | Ramos Ponce, Oscar Efrain (Ingeniería de Sistemas) | es_PE |
dc.identifier.scopusid | 2-s2.0-85128957811 | |
dc.identifier.event | Communications in Computer and Information Science |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |