Show simple item record

dc.contributor.authorRucoba Calderón, Carla Valeria
dc.contributor.authorRamos Ponce, Oscar Efrain
dc.contributor.authorGutiérrez Cárdenas, Juan Manuel
dc.contributor.otherGutiérrez Cárdenas, Juan Manuel
dc.contributor.otherRamos Ponce, Oscar Efrain
dc.date.accessioned2023-02-07T15:19:11Z
dc.date.available2023-02-07T15:19:11Z
dc.date.issued2022
dc.identifier.citationRucoba-Calderón, C., Ramos, E. & Gutiérrez-Cárdenas, J. (2022). Crack Detection in Oil Paintings Using Morphological Filters and K-SVD Algorithm. En J. A. Lossio-Ventura, J. Valverde-Rebaza, E. Díaz, D. Muñante, C. Gavidia-Calderon, A.D.B. Valejo & H. Alatrista-Salas (Eds.), Information Management and Big Data: Eighth Annual International Conference, SIMBig 2021, December 1-3, 2021, Proceedings, Communications in Computer and Information Science (vol. 1577, pp. 329-339). Springer. 10.1007/978-3-031-04447-2_22es_PE
dc.identifier.issn1865-0929
dc.identifier.urihttps://hdl.handle.net/20.500.12724/17547
dc.description.abstractCracks in oil paintings constitute an undesirable but unavoidable effect of time, deteriorating the painting quality. This work proposes a crack detection method that supports the physical restoration process of the artworks, providing a fissure map that allows the artist to visualize the pictorial layer and its flaws. This approach applies three image processing techniques to digitized oil paintings: oriented elongated filters, top-hat morphological filters and a K-SVD algorithm. Then, a post-processing stage based on K-Means is performed on the resulting binary maps to eliminate false positives. Finally, a pixel-by-pixel voting technique is applied to combine the binary maps. Our proposed framework has a better performance detecting craquelure when compared to other methods such as ADA Boost and convolutional neural networks. We obtained a recall of 0.8577, a probability of false alarm of 0.0779, a probability of false negatives of 0.1423, an accuracy of 0.7123, and an F1 value of 0.7783, which is amongst the best results for the state-of-the-art techniques.es_PE
dc.formatapplication/pdf
dc.language.isoeng
dc.publisherSpringeres_PE
dc.relation.ispartofurn:issn:18650929
dc.relation.ispartofurn:isbn:978-303104446-5
dc.rightsinfo:eu-repo/semantics/restrictedAccess*
dc.sourceRepositorio Institucional - Ulimaes_PE
dc.sourceUniversidad de Limaes_PE
dc.subjectDetectoreses_PE
dc.subjectPintura al óleoes_PE
dc.subjectDeterioro de materialeses_PE
dc.subjectDetectorses_PE
dc.subjectOil paintinges_PE
dc.subjectDeterioration of materialses_PE
dc.titleCrack Detection in Oil Paintings Using Morphological Filters and K-SVD Algorithmes_PE
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.type.otherArtículo de conferencia en Scopus
ulima.areas.lineasdeinvestigacionProductividad y empleo / Innovación: tecnologías y productoses_PE
dc.publisher.countryDEes_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.02.04
dc.identifier.doihttps://doi.org/10.1007/978-3-031-04447-2_22
dc.contributor.studentRucoba Calderón, Carla Valeria (Ingeniería de Sistemas)
ulima.cat9
ulima.autor.afiliacionGutiérrez Cárdenas, Juan Manuel (Universidad de Lima) (Scopus)es_PE
ulima.autor.afiliacionRamos Ponce, Oscar Efrain (Universidad de Lima) (Scopus)es_PE
ulima.autor.carreraGutiérrez Cárdenas, Juan Manuel (Ingeniería de Sistemas)es_PE
ulima.autor.carreraRamos Ponce, Oscar Efrain (Ingeniería de Sistemas)es_PE
dc.identifier.scopusid2-s2.0-85128957811
dc.identifier.eventCommunications in Computer and Information Science


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record