• español
    • English
  • Politics
  • English 
    • español
    • English
  • Login
View Item 
  •   Institutional Repository ULima
  • Artículos
  • 1. En revistas indexadas en Scopus, Web of Science y SciELO
  • Estudios Generales
  • View Item
  •   Institutional Repository ULima
  • Artículos
  • 1. En revistas indexadas en Scopus, Web of Science y SciELO
  • Estudios Generales
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Blow-up results for a viscoelastic beam equation of p-Laplacian type with strong damping and logarithmic source

Thumbnail
Date
2023
Author(s)
Carvalho Pereira, Ducival
Araújo, Geraldo M.
Raposo, Carlos A.
Cabanillas Zannini, Victor Rafael
Metadata
Show full item record
Abstract
In this paper, we investigate the existence, uniqueness, exponential decay, and blow-up behavior of the viscoelastic beam equation involving the (Formula presented.) -Laplacian operator, strong damping, and a logarithmic source term, given by (Formula presented.) where (Formula presented.) is a bounded domain of (Formula presented.) and (Formula presented.) is a memory kernel. Using the Faedo–Galerkin approximation, we establish the existence and uniqueness result for the global solutions, taking into account that the initial data must belong to an appropriate stability set created from the Nehari manifold. The study of the exponential decay of our problem is based on Nakao's method. Finally, the blow-up behavior on the instability set is proved.
URI
https://hdl.handle.net/20.500.12724/17723
DOI
https://doi.org/10.1002/mma.9020
How to cite
Carvalho Pereira, D., Araújo, G. M., Raposo, C. A. & Cabanillas, V. R. (2023). Blow-up results for a viscoelastic beam equation of p-Laplacian type with strong damping and logarithmic source. Mathematical Methods in the Applied Sciences. https://doi.org/10.1002/mma.9020
Publisher
John Wiley and Sons
Subject
Viscoelasticity
Laplacian operator
Damping (Mechanics)
Logarithmic functions
Singularities (Mathematics)
Galerkin methods
Journal
Mathematical Methods in the Applied Sciences
ISSN
1704214
Collections
  • Estudios Generales [145]


Contact Us: [email protected]

Todos los derechos reservados. Diseñado por Chimera Software
 

 

Browse

All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsAuthors UlimaDocument typeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsAuthors UlimaDocument type

My Account

LoginRegister

Statistics

View Usage Statistics

Contact Us: [email protected]

Todos los derechos reservados. Diseñado por Chimera Software