• español
    • English
  • Politics
  • English 
    • español
    • English
  • Login
View Item 
  •   Institutional Repository ULima
  • Artículos
  • 4. En conferencias y otros eventos
  • Ingeniería Industrial
  • View Item
  •   Institutional Repository ULima
  • Artículos
  • 4. En conferencias y otros eventos
  • Ingeniería Industrial
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Principal Components and Neural Networks Based Linear Regression to Determine Biomedical Equipment Maintenance Cost in the Peruvian Social Security Health System

Thumbnail
Date
2024
Author(s)
Toledo Ponce, Eduardo Fernando
De la Cruz, C.
Mamani C.
Metadata
Show full item record
Abstract
In this study, multivariate linear regression models and principal component analysis, and artificial neural networks (ANN) were designed to predict the monthly cost of biomedical equipment maintenance services in the Peruvian Social Health Insurance (EsSalud). The data employed in the development of these models were obtained from maintenance contracts and their execution, from 2019 to present. The results demonstrate that the multivariable linear regression model acquires adequate metrics; still, such a model has four correlated variables. Hence, the use of the principal component regression model enhanced the outcomes by using two components, thus acquiring greater interpretability. Finally, the ANN model obtained the best performance predictor.
URI
https://hdl.handle.net/20.500.12724/20040
DOI
https://doi.org/10.1007/978-3-031-49410-9_4
How to cite
Toledo, E., De la Cruz, C., Mamani, C. (2024). Principal Components and Neural Networks Based Linear Regression to Determine Biomedical Equipment Maintenance Cost in the Peruvian Social Security Health System. IFMBE Proceedings.https://doi.org/10.1007/978-3-031-49410-9_4
Publisher
Springer Science and Business Media Deutschland GmbH
ISSN
1680-0737
Event
IFMBE Proceedings
Collections
  • Ingeniería Industrial [182]


Contact Us: [email protected]

Todos los derechos reservados. Diseñado por Chimera Software
 

 

Browse

All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorsAuthors UlimaDocument typeThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorsAuthors UlimaDocument type

My Account

LoginRegister

Statistics

View Usage Statistics

Contact Us: [email protected]

Todos los derechos reservados. Diseñado por Chimera Software